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Abstract 

Hydropower accounts for more than one third of Ontario Power Generation’s electrical 

production. Hydroelectric development often occurs on rivers that also support recreational 

fisheries. The construction and operation of dams, diversions and generating facilities 

unavoidably influence the ecological function of rivers. The Aguasabon River is a northern 

Canadian Shield river with major developments for water diversion, storage, and power 

generation. This river offers opportunity to examine the importance of vertical flows through the 

substrate at a Brook Trout (Salvelinus fontinalis) spawning area. The vertical and horizontal 

hydraulic gradients and subsequent water temperature changes are the subject of this study. 

Piezometers were used to monitor the river and subsurface water levels near Brook Trout redds 

during the spawning and incubation period under normal and increasing discharge conditions. 

The Brook Trout spawning area in the Aguasabon River experienced upwelling conditions for 

the entire monitoring period (Oct 28th, 2016 – Jan 13th, 2017) before water release at the Long 

Lake Control Dam (LLCD). Hyporheic temperatures declined gradually, remaining >3.7 °C. The 

river temperature in the winter before water release was 1.5 °C. Rapid increase in water level 

after discharge from above the LLCD resulted in the reversal of flow in the hyporheic zone. 

Negatives values of vertical and horizontal gradients occurred for up to 30 h between surface 

water and hyporheic water up to 1.8 m below the river substrate. The water temperature in all 

piezometers decreased in unison with water release. Shallow inshore piezometers showed the 

greatest change, ˃53 h at <1 °C, compared to both shallow and deep offshore piezometers, which 

never fell <1 °C. 

A controlled experiment was used to monitor time to hatching, larval emergence and 

survival of Brook Trout in a lab setting. Historical data show redd temperature during the Brook 
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Trout incubation period (October-April) on the Aguasabon River was maximal after a 2013 

discharge, which lowered the water temperature of Brook Trout redds to 0.3 °C, a drop of 5.3 °C. 

Recovery to pre-discharge temperatures took 72 h, after 40 h at ˂1°C. This worst-case cold 

treatment was selected for an experiment at the Dorion Fish Culture Station, Ontario. The 

treatment had no effect on survival of incubating Brook Trout eggs (n = 1020) compared to 

control (n = 1020). Survival from fertilization to hatching was high for both treatment and 

control replicates (>90%), but was considerably lower for fertilization to emergence (55%). The 

cold treatment did not decrease development time from fertilization to larval emergence. The 

hatchery study implies that the redd temperature change experienced on the Aguasabon River in 

2013 neither decreased the survival nor delayed hatching and emergence of Brook Trout. An 

overall recommendation is that a staged discharge at the LLCD would lessen the reversal of flow 

in the hyporheic zone and the magnitude of temperature changes monitored at Brook Trout redds 

during 2013 and 2017. 
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General Introduction 

Hydropower is an environmentally clean, reliable, and renewable energy resource. The 

production of hydropower, however, does influence the ecological function of rivers due to 

channel fragmentation and abrupt changes in river flow (Renöfält et al. 2010). Hydropeaking and 

streamflow regulation constitute the practises used in altering the flow of rivers for creating 

hydroelectricity. These practises can affect fish populations due to unstable and rapidly changing 

water levels, along with other changes to aquatic habitats (Murchie et al. 2008). 

The Aguasabon River of Northwestern Ontario, Canada is both a significant source of 

hydroelectricity for the province of Ontario (OPG 2013) and supports a recreational fishery that 

includes Walleye (Sander vitreus), Northern Pike (Esox lucius), Smallmouth Bass (Micropterus 

dolomieu) and Brook Trout (Salvelinus fontinalis). Hydroelectricity on the Aguasabon River is 

produced by regulating streamflow in a winter reservoir system. Such a system generally 

involves the storage of water behind a control structure during high flows (e.g., spring freshet) 

and controlled or scheduled releases during periods of low flows (e.g., midwinter) to deliver 

water to generating facilities for hydropower in times of high energy demand (Haxton et al. 

2015). Water release or storage behind the control structure may result in an immediate change 

from low-river to high-river stage (and vice versa) at various times of the year. This kind of 

change has potential to alter physical and chemical characteristics of aquatic habitats, such as the 

hyporheic environments required by fish to maintain suitable incubation environments. The 

spawning and incubation success of Brook Trout in the Aguasabon River is of special concern 

due to the species-specific spawning requirements, limited spawning habitat in the river, and the 

vulnerability of that habitat to upstream water management. Because of a diversion at a river 

meander, the Aguasabon offers a unique opportunity to understand vertical and horizontal head 
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gradients that may be responsible for creating Brook Trout spawning habitat, and how discharges 

at the LLCD change the quality of that habitat.     

Brook Trout Spawning and Redd Site Selection 

Brook Trout require cold, clean, and well oxygenated water to survive (Wenger et al. 

2011). Brook Trout select spawning sites and in them they construct redds, where they lay eggs 

5-10 cm into the substrate of rivers or lakes. The hyporheic zone is the connecting ecotone 

beneath and adjacent to a streambed, where mixing occurs between infiltrating stream water and 

shallow groundwater (Boulton et al. 1998, Bencala 2000). Brook Trout spawn during the fall 

(October-November), their hatching occurs later in February, and their larvae emerge from the 

substrate in spring (April-May). In Canadian Shield waters, Brook Trout spawning areas are 

usually found close to shorelines, in areas associated with discharging groundwater (Curry et al. 

1995a, Blanchfield 1996). Groundwater upwellings, or springs, are the result of groundwater 

under pressure in an aquifer that seeps through the permeable layers of porous substrate below a 

lake or river (Brunke and Gonser 1997). Groundwater–surface water interactions, including 

hyporheic flow, constitute an important factor in determining spawning locations for Brook 

Trout, as well as hatching success and emergence after incubation. The most commonly 

supported hypothesis for this association is that the upwelling groundwater (maintained at 4–6 

°C) stabilizes the thermal environment where incubating eggs develop, and prevents eggs from 

freezing conditions during winter (Snucins et al. 1992, Curry et al. 1995a). Constant groundwater 

discharge through redds also helps to prevent their dewatering (Brick 1986). Selection of redd 

sites often occurs over coarse sediments that yield greater hydraulic conductivity, which in turn 

creates stronger hyporheic flow onto the spawning redds (Sear et al. 2014).  
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Threats of Flow Regulation to Brook Trout Spawning and Incubation  

Interstitial water quality and hyporheic condition such as temperature and groundwater 

flow are sensitive to hydropeaking regimes and are directly influenced by the frequency, 

amplitude and duration of flow alteration (Casas-Mulet et al. 2015). One study analyzing 

dynamics of surface water and groundwater at an Atlantic Salmon redd found that during periods 

of low flow, hydrochemistry of the hyporheic zone was dominated by groundwater inputs, while 

surface water inputs dominated during high flows (Malcolm et al. 2004). Another study of a 

northern Canadian Shield river examined regulated flow effects on groundwater discharge at 

Brook Trout spawning redds (Curry et al. 1994). Changing flows altered shallow groundwater 

pathways at Brook Trout redds. Rising flows allowed surface water and groundwater mixing at 

the river bank, whereas river level recession increased potentials for groundwater flow 

horizontally in an offshore direction. The study concluded that hydropeaking regimes involving 

rapid increases in river level alter hyporheic flow in Brook Trout redds and have potentially 

negative impacts on Brook Trout recruitment, with changes to interstitial water conditions a main 

concern.  

The Current Study 

There is only one known Brook Trout spawning location in the main channel of the 

Aguasabon River. This site was found by the Ontario Ministry of Natural Resources and Forestry 

in 2006, when 11 Brook Trout were implanted with radio transmitters, and one was tracked at the 

end of September to a location in the main channel 1 km south of the Harvey Creek confluence, 

approximately 20 km north of Terrace Bay, Ontario (Figure 1.1). This fish was observed in the 

area with other spawning Brook Trout; active redd construction occurred until the end of 

November (OMNRF unpublished 2006, 2007). Previously, Brook Trout spawning had only been 
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observed in Harvey Creek, a small spring-fed tributary of the Aguasabon River. Water flow at 

the spawning location in the main channel is dominated at certain periods by the discharging 

regime of the Long Lake Control Dam (LLCD), 12 km above the spawning location (Figure 1.2). 

The site also receives water from natural sources, including Harvey Creek and the Little 

Aguasabon River (OMNRF unpublished 2007). The location of the Brook Trout spawning area 

is along an artificial bank that was created with existing gravel at the river site, by excavating 

part of the river channel in order to straighten the flow and redirect it from what is now an 

oxbow (Figure 1.1). This channel manipulation was done to allow better passage of timber 

during log drive operations. It is unknown if Brook Trout used this site for spawning prior to the 

channel manipulation. 

After discovery of spawning in the main channel, the Ontario Ministry of Natural 

Resources and Forestry installed a temperature logger to monitor temperature in the substrate at 

an active redd. Flow increases during spawning and incubation were found to decrease redd 

temperature with unknown consequences for incubating Brook Trout eggs. Further investigation 

was needed to quantify and describe surface hyporheic flow in relation to these discharge events. 

The importance of maintaining natural flow and temperature regimes of spawning areas on a 

regulated river is paramount to ensure annual recruitment and long-term success for Brook Trout 

(Curry et al. 1994). These recommendations led to the current study. 

Ecologically determined limitations on minimum and maximum flows related to 

discharges at dams have been implemented on many river systems and are a critical component 

of river management (OPG 2013). On the Aguasabon River, there are critical flow and reservoir 

levels that must be maintained above and below the LLCD as part of the commitments made in 

water management plan. Currently, flows over LLCD should not fall less than 5 m3/s for benthic 
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invertebrate protection. However, the current water management plan lacks site-specific advice 

regarding river regulation and how it the vertical and horizontal flow through Brook Trout 

spawning redds. Filling the knowledge gap including hyporheic monitoring through various 

stages of river flow will build better models of minimal flow over control structures that will 

protect Brook Trout habitat and other ecological processes in porous substrates. 



17 

 

 

Figure 1. 1 Brook Trout Spawning Area on Aguasabon River. River flows north to south. 
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Objectives 

The primary objectives of this study were to: 

• describe surface flow through the substrate during the spawning and incubation periods 

of Brook Trout at the Aguasabon River’s only known spawning location under (a) normal 

and (b) increasing discharge conditions; 

• describe patterns of river discharge and site temperatures on the annual patterns of Brook 

Trout emergence; and 

• simulate and monitor the effect of a midwinter water release during the incubation period 

by exposing incubating Brook Trout to colder water temperatures experienced in the 

spawning site in a controlled experiment, monitoring time to hatching, larval emergence 

and survival at the Dorion Fish Culture Station.  

The results are organized into two chapters: Chapter 2, Effect of River Regulation on the 

Hyporheic Flow Regime of Brook Trout Spawning Habitat on a Canadian Shield River; and 

Chapter 3, Effects of a Prolonged Cold Treatment on Brook Trout Hatching, Emergence, and 

Survival.  

Historical Background 

The Aguasabon River flows south from Long Lake and in its last 609 m drops 63 m at 

Aguasabon Falls, a natural barrier to fish populations (from Lake Superior), before draining into 

Lake Superior. The Aguasabon River contains multiple artificial structures for water diversion, 

storage, and power generation, which were constructed as part of the Long Lake Diversion 

Project completed in 1939 (Peet and Day 1980). The diversion was originally for transporting 

logs from the otherwise inaccessible forests around Long Lake, and for providing a means to 

maintain water levels in Lake Superior waterways during drought periods. Ontario also realized 
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the hydroelectric power production potential of the diversion, both locally and downstream in the 

Great Lakes (i.e., at Niagara Falls; Peet 1978). The Kenogami River Control Dam was 

subsequently constructed 16 km north of Long Lake to prevent northward flow and increase 

water moving through the diversion (Peet 1978). The LLCD was constructed at the south end of 

Long Lake and controls the southward flow of water through the Aguasabon River to the Great 

Lakes. A second phase of the project from 1945–1948 saw the construction of the Hays Lake 

Dam and the Aguasabon Generating Station near the mouth of the Aguasabon River (Peet 1978). 

During the same time, a pulp and paper mill was constructed near the mouth of the Aguasabon 

River upstream from the Falls and used the impounded Hays Lake and Aguasabon River as a 

booming ground for timber. In 1989, log booming ceased on the Aguasabon River system. The 

Aguasabon Generating Station was developed to supply power to the pulp and paper mill (now 

operated by AV Birla), the Town of Terrace Bay and the Province of Ontario through its 

connection to the provincial power grid, and is operated by Ontario Power Generation (OPG 

2013). 
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Figure 1. 2 Map of Long Lake Diversion system 

Brook Trout Spawning Site 
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Chapter 2. Effect of River Regulation on the Hyporheic Flow Regime of Brook 

Trout Spawning Habitat on a Canadian Shield River  

2.1 Abstract 

In this study, piezometers were used to monitor hyporheic flow at the Brook Trout spawning area 

during their spawning and incubation period on the Aguasabon River, under normal and 

increasing discharge conditions, to investigate the effects of upstream water management. The 

Brook Trout spawning area in the Aguasabon River maintained upwelling hyporheic flow for the 

entire 2016-17 monitoring period (Oct 28th – Jan 11th) before the water release event occurred at 

LLCD on Jan 11th, 2017. Vertical and horizontal gradients and vertical flux remained positive 

and stable during this period. Water temperatures declined gradually over the monitoring period 

(remaining >3.7 °C), but were higher than the river temperature (1.5 °C) in the winter before 

water release. Rapid increase in water levels on January 11th, 2017 resulted in the reversal of 

hyporheic flow through the substrate. Negatives values of flux, vertical and horizontal gradients 

were measured up to 1.8 m below the river substrate. The spawning area changed from positive 

(upwelling) to negative vertical gradients (downwelling) in the hyporheic zone. Hyporheic water 

temperature measured in piezometers before water release was >3.7°C, then decreased as 

discharge increased during the water release event at LLCD. The temperature of hyporheic water 

in shallow inshore piezometers had the greatest decrease (<1 °C for >53 h) compared to deeper 

offshore piezometers, which never fell <1 °C and returned more quickly to ambient hyporheic 

temperature. Because LLCD discharge increased midway through the Brook Trout spawning 

period, it resulted in substantially different hyporheic redd conditions, relative to conditions that 

existed at the time of site selection and spawning, a change that Brook Trout do not anticipate. 
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2.2 Introduction 

Brook Trout (Salvelinus fontinalis) likely assess stream depth, substrate type, water 

velocity, and the presence of discharging groundwater to select spawning and incubation habitats 

(Reiser 1976, Curry et al. 1995a). The surface water–groundwater exchange in the hyporheic 

zone, where they construct redds to hold and incubate eggs and early larval stages, is mostly 

controlled by channel morphology, pressure head of overlying surface water, and the 

permeability of riverbed sediments (Arntzen et al. 2006, Brown and Pasternack 2008). The 

physical and chemical properties of discharging groundwater in the hyporheic zone are likely the 

most important factors in the selection of redd sites (Webster and Eiriksdottir 1976, Witzel and 

Maccrimmon 1983a, Curry and Noakes 1995). Maintaining the stability of these properties 

throughout the spawning and the egg and larval incubation periods is necessary for successful 

Brook Trout recruitment. 

Manipulation of water flow in rivers for hydroelectric power generation has been shown 

to alter the chemical and physical nature of the hyporheic zone (Curry et al. 1994, Malcolm et al. 

2004). Alterations to interstitial water quality may have direct impacts on Brook Trout 

recruitment (McCullough 1999). The development of control dams and hydroelectric facilities on 

rivers often leads to large fluctuations of river stage. These fluctuations in river stage alter the 

surface water–groundwater interactions and have lasting effects downstream of control structures 

on hyporheic habitats required by fish (Curry et al. 1994, Sawyer et al. 2009, Casas-Mulet et al. 

2015). In the Colorado River, for example, water chemistry, temperature, and hyporheic 

exchange volume fluctuated in response to flow oscillations 15 km downstream of the Longhorn 

Dam (Sawyer et al. 2009). Dam induced hyporheic exchange penetrated several metres into the 

riparian aquifer. On the Nipigon River (Ontario, Canada), rising river levels for power 
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management reversed groundwater flow at downstream locations and introduced surface water 

into the river bank, where various degrees of mixing with groundwater occurred, and the 

recession of river levels increased groundwater flow potentials in an offshore direction (Curry et 

al. 1994). In the absence of hydroelectric control and generating structures, groundwater would 

normally flow through riparian aquifers towards a river, ultimately stabilizing water chemistry, 

temperature, and groundwater flux into the hyporheic zone.  

 The Aguasabon River is located north of Terrace Bay, Ontario, east of the Nipigon River. 

Fish populations in this river, including the Brook Trout, are isolated between the Aguasabon 

Power Generating Station on Hays Lake, where a waterfall forms a natural barrier, and the 

LLCD, part of the Long Lake Diversion Project, a major re-routing of the northward flowing 

water from the Kenogami River into Lake Superior (Peet and Day 1980). The native Brook Trout 

population is specifically considered in the Aguasabon River Water Management Plan (OPG 

unpublished 2016), due to its recreational importance, its limited spawning habitat in the main 

channel, and the vulnerability of this habitat to water regulation at LLCD. Thus far, Brook Trout 

have been found to spawn in only one location in the main channel approximately 12 km 

downstream of LLCD. The spawning location is subject to changes in river stage and discharge 

as result of water management upstream at the LLCD. Ontario Power Generation manages the 

Aguasabon system as a winter reservoir intended to store water during high flow periods and 

release it during low flow periods. Historically, during the incubation period of Brook Trout 

(October–April), the hyporheic environment is subject to one major increase in discharge from 

the LLCD typically in January of each year, a change that the Brook Trout do not anticipate 

when they select spawning redds in the fall. The effects of annual discharge on water 

temperature at identified Brook Trout redds have been previously investigated using a single 
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temperature logger buried in a Brook Trout redd, which has shown temperature declines during 

the incubation period after the eye-up stage and prior to hatching.      

 River regulation, including water release events at control structures, has the potential to 

alter surface water–groundwater interactions at downstream locations. These locations may 

include spawning habitat. For this thesis, I hypothesize that increasing discharge conditions are 

associated with the reversal of flow and decreasing temperature in the hyporheic zone. I further 

hypothesize that the effect of temperature on Brook Trout development continues to the larval 

emergence stage. The objectives of this study were (1) to describe flow through the substrate 

during the spawning and incubation periods of Brook Trout on the Aguasabon River’s known 

spawning location under (a) normal and (b) increasing discharge conditions; and (2) describe 

patterns of river discharge and site temperatures on annual patterns of Brook Trout emergence. 

2.3 Methodology 

2.3.1 Hyporheic Flow Monitoring 

 Standpipe piezometers were used to measure hydraulic pressure head at 11 points at the 

previously recorded Brook Trout spawning location in the main channel of the Aguasabon River, 

which is approximately 5 m from a high-water mark on a bank. Originally, 12 piezometers were 

installed during the summer of 2016, but the data from one of the piezometers was discarded due 

to a faulty sensor. Piezometers were cut from 2.5 cm diameter galvanized steel piping and 

attached to a stainless-steel well screen of 1.9 × 15.2 cm dimension. Piezometers were driven 

directly into the river substrate, which was dominated by sand and gravel mixes, using a small, 

manual pile driver from a boat. Each piezometer was equipped with a Solinst EDGE water 

level/temperature monitor (datalogger) that hung at the bottom of the piezometer from a length 

of aircraft cable. A separate steel rebar was inserted into the river and equipped with a similar 
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datalogger (referred to as a river level station). A Solinst barometric pressure and temperature 

datalogger was hung in the nearest tree on shore to the piezometer site. All piezometers and the 

river level station were marked with a line of equal elevation using transit survey equipment, to 

relate river level and hydraulic head measurements to a common overhead datum. 

 Two transects with six piezometers in each were originally installed perpendicular to the 

shoreline at the spawning site (Figure 2.1). Hereafter, they are labelled north (N) and south (S) 

transects. Each transect consisted of three piezometer nests: a shoreline nest that would be 

inundated during high water conditions and exposed during low conditions (Inshore, I), a nest in 

deeper water (~ 6 m offshore) further from shore than the observed Brook Trout redds (Offshore, 

O), and a nest halfway between (Middle, M). Each nest consisted of a shallow (S; 0.9 m) and 

deep (D; 1.8 m) piezometer. Hereafter, any individual piezometer is referenced using acronyms, 

e.g., “NIS,” which would refer to the piezometer on the north transect, inshore (near the 

shoreline), and in shallow water. The SMS piezometer data was discarded due to a faulty logger 

sensor. Monitoring began on October 28th, 2016 and ended January 13th, 2017, when ice flows 

disturbed the piezometers. On January 11th, 2017, Ontario Power Generation increased discharge 

at the LLCD upstream from the spawning site from 18 to 68 m3/s, a change that encompassed 

minimum to maximum flow conditions for the 2016-17 winter season (Figure 2.1). These flows 

were in addition to natural contributions, such as from Harvey Creek and the Little Aguasabon 

River.   
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Figure 2. 1 Arrangement of piezometers in a single transect at the Aguasabon River study site, 

Orientation is in cross section facing upstream. 

 

  Hydraulic pressure head in each piezometer was measured at half-hour intervals. 

Subtracting barometric pressure measured at the same time allowed total pressure above the 

dataloggers to be converted to height of water above the dataloggers using the Solinst software. 

Manually employing a Solinst 101 P1 water level meter and clock allowed both substrate and 

river levels to be calibrated to depth below the common datum line. River and hyporheic 

temperatures were recorded by all dataloggers associated with the piezometers, and air 

temperature was recorded with the barometric pressure, again at half-hour intervals. 

2.3.2 Vertical and Horizontal Head Gradients 

Three different vertical head gradients (VHG) were calculated: first, between the shallow 

piezometer and the river; second, between the deep piezometer and the river; third, between the 

deep piezometer and the shallow piezometer. These calculations were repeated for each nest and 

for both transects. Vertical gradients were measured from the deepest location to the surface 

water, where positive VHG indicated discharging flux from the substrate to the river. Negative 

VHG indicate discharging flux from the river to the substrate. Horizontal head gradients (HHG) 

were calculated between the shallow and deep piezometers for adjacent nests within the same 

Common Datum 
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perpendicular transect (i.e., north nearshore - north middle, north middle - north offshore). VHG 

and HHG were graphed together and were calculated using the following equation: 

Eq. 1:  Hydraulic Gradient = dh/dl, 

where dh is the difference in hydraulic head between piezometers, and dl is the vertical or 

horizontal distance between piezometer screens. 

2.3.3 Hydraulic Conductivity 

 Hydraulic conductivity of the spawning area substrate was measured using a slug test. A 

solid bar steel slug (1.3 cm × 61 cm) was inserted into the piezometer, and water level 

dataloggers were set to record measurements at half-second intervals. Once water levels reached 

equilibrium after initial insertion, the slug was removed from the piezometer and the recovery 

time was recorded. These rising head slug tests were analyzed with AQETSOLV software for 

Windows, using the Hvorslev (1951) method to determine hydraulic conductivity.  

2.3.4 Hyporheic Flux 

 The vertical component of flux was examined between each shallow piezometer and river 

combination, and between each deep piezometer and shallow piezometer combination, using the 

basic Darcy equation (Freeze and Cherry 1979): 

Eq. 2: Flux = (vertical hydraulic gradient) × (hydraulic conductivity). 

It was assumed the substrate between the piezometer tips and the river was homogenous and 

isotropic.  

2.3.5 Contour Mapping the Hyporheic Zone 

 A river cross-section at each of the two transects was constructed to estimate the two-

dimensional direction of hyporheic flow, using SurferV14 software and mapping isolines 

(contour lines of equal potential). Isolines in cross-section beneath the substrate were drawn from 



28 

 

water elevations measured in piezometers. Contour maps were created at three specific times: 

late October during Brook Trout spawning (October 28th, 2017), during a period before water 

release (January 10th, 2017), and during the peak water level after the release (January 12th, 

2017). 

2.3.6 Monitoring of Brook Trout Emergence 

 Drift netting to capture Brook Trout fry was conducted for four days per week during 

April through May, 2010-2016, with two drift nets approximately 15−20 m downstream of the 

spawning redds. Larval drift nets (76 cm wide and 53 cm high with 0.15 cm mesh and a 1000-

micron basket) were active for 18–24 h. The daily percentage of total Brook Trout Fry caught 

during a season was used to display annual trends in emergence, and was calculated by the 

following equation: 

Eq. 3: (Brook Trout larvae caught each day) / (Total number of Brook Trout in the year). 

Redd temperature was recorded by the Ontario Ministry of Natural Resources and 

Forestry personnel from the Nipigon District office from a HOBO pendant temperature data 

logger (UA-001-08) set 5–10 cm into the substrate of a Brook Trout redd. River temperature was 

similarly recorded at the substrate surface of the river on the opposite bank of the river. 

Estimated discharge at the Brook Trout spawning site was obtained from discharge data 

collected by Ontario Power Generation at Hays Lake Dam using the following equation: 

Eq. 4 (Appendix 1.8): Brook Trout Site Discharge = (Daily Total Inflow, Hays Lake) – 

(Daily Local Inflow, Hays Lake) × (0.52), 

where 0.52 represents the estimated proportional volume of water that drains into Aguasabon 

above the Brook Trout spawning area (OPG unpublished, 2017).        
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2.4 Results  

During October 28th, 2016 to January 10th, 2017, no discharge events occurred at Long 

Lake Control Dam. During this period, the mean estimated mean daily discharge at the spawning 

site was 17 m3s-1 and ranged from 12 m3s-1 (November 16th, 2016) to 25 m3s-1 (November 30th, 

2016). On January 11th, 2017, Ontario Power Generation released water at the LLCD, increasing 

flows downstream on the Aguasabon River, including at the reach where Brook Trout spawn. 

Before water release, discharge at the spawning area was 18 m3s-1, and after release it increased 

to 67 m3s-1 (OPG unpublished, 2017). This change translated to a 0.9 m increase in river depth 

over the spawning redds in ˂24 h (Figure 2.2). Monitoring occurred until January 13th, 2017, 

when ice flows disrupted the piezometers. A substantial increase in flow occurred after the 

January water release when compared to the median value for flows: ~35 m3s-1 during the 

spawning season in late October, and ~45 m3s-1 at the median peak in mid January.      

 
 

Figure 2. 2 River surface measured below the common datum (blue, left axis), and the 

approximate average daily discharge (OPG unpublished 2017) at the spawning area (red, right 

axis) for a portion of the spawning period (Oct 28th – Nov 3rd, 2016) and the water release event 

at the LLCD during the Brook Trout Incubation period (Jan 7th – Jan 13th, 2017) 

R
iv

er
 D

ep
th

 (
m

) 
b
el

o
w

 d
at

u
m

 
F

lo
w

 at R
ed

d
s (m

3s
-1) 



30 

 

 

2.4.1 Vertical Head Gradients and Vertical Flux 

 VHG in both transects remained positive for the entire spawning and incubation period 

before the water release event occurred (Appendixes 1.2 and 1.3). As river levels rose on Jan 

11th, 2017, all VHG declined into negative values on both transects (Table 2.1). VHG remained 

negative for a range of 5-30 h following water release. Vertical flux measured between the river 

and piezometers in the north and south transects followed the same pattern as VHG (Appendixes 

1.4 and 1.5). Negative VHG and vertical flux only occurred during and after water release at the 

LLCD. Before the water release event occurred, natural fluctuations of the river measured by the 

river level logging station (Figure 2.2, blue line) did not cause a change to VHG and vertical flux 

in the way that the release event did. 
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Table 2. 1 Vertical head gradients (positive values indicate vertical flow from substrate to river), and vertical flux (mm s-1) calculated 

for north and south transect piezometers inserted at Brook Trout spawning area pre-and post-LLCD water release, the difference and 

the time spent negative (h). 

Transect Nest Piezometer 
Vertical Gradient   Vertical Flux 

Duration 
Pre Post Difference   Pre Post Difference 

North   Inshore Shallow-River 5.32 E02 -3.76 E02 9.08 E02   2.24 E02 -1.59 E02 3.83 E02 14 

Deep-River 4.33 E02 -3.91 E02 8.25 E02   NA NA  NA  16 

Deep-Shallow 3.36 E02 -4.11 E02 7.47 E02   9.76 E04 -1.19 E03 2.16 E03 20 

Middle Shallow-River 9.94 E02 -6.52 E02 1.64 E01   4.16 E03 -2.72 E02 6.88 E03 18 

Deep-River 6.02 E02 -4.54 E02 1.05 E01   NA NA NA 19 

Deep-Shallow 2.45 E02 -2.84 E02 5.29 E02   1.81 E02 -2.19 E02 4.01 E02 21 

Offshore Shallow-River 8.61 E02 -9.70 E02 1.83 E01   2.05 E02 -2.32 E02 4.37 E02 20 

Deep-River 5.30 E02 -5.23 E02 1.05 E01   NA NA NA 19 

Deep-Shallow 1.56 E02 -1.70 E03 1.73 E02   1.32 E02 -1.67 E03 1.49 E02 5 

South   Inshore Shallow-River 3.51 E02 -5.90 E02 9.40 E02   9.47 E03 -1.59 E02 2.53 E02 30 

Deep-River 4.43 E02 -5.34 E02 9.80 E02   NA NA NA 22 

Deep-Shallow 5.47 E02 -4.71 E02 1.01 E01   7.60 E04 -6.54 E02 1.41 E03 18 

Middle Shallow-River 6.90 E02 -1.22 E0 1.91 E01   1.47 E02 -2.60 E02 4.08 E02 26 

Deep-River NA NA NA  NA NA NA NA 

Deep-Shallow NA NA NA   NA NA NA NA 

Offshore Shallow-River 7.06 E02 -1.08 E01 1.78 E01   2.53 E02 -3.87 E02 6.40 E02 24 

Deep-River 4.05 E02 -5.67 E02 9.62 E02   NA NA NA 23 

Deep-Shallow 7.90 E03 -2.00 E04 8.11 E03   1.87 E04 -5.27 E06 1.92 E04 0.5 
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2.4.2 Horizontal Head Gradient  

 All HHGs measured between nests in the north and south transects remained positive for 

the entire incubation period before water release (Appendixes 1.6 and 1.7). As river levels rose 

on January 11th, 2017, HHGs declined into negative values, indicating flow changes to the 

opposite horizontal direction, towards the shoreline. The exception was the SOS-SMS pair, 

where HHG began to gradually decline at the time of water release, but did not reach negative 

values during the sampling period. HHGs remained negative for a range of 22–50 h (Table 2.2). 

HHG between piezometers NOD and NMD took 10 h longer to reach negative values after water 

release relative to the other piezometers, and did not return to positive values during the 

sampling period. As was the case for VHG and vertical flux, the LLCD water release was the 

only factor likely to have altered the horizontal flow through the substrate at the spawning area 

during the period of observation. 

Table 2. 2 North and south transect horizontal head gradients (positive values indicate horizontal 

flow from deeper nests toward inshore nest) for piezometers at Brook Trout spawning area, pre-

and post-water release at LLCD, time spent negative (h) and maximum recorded change in HHG 

at time of water release. 

Transect Nest Piezometer Pre-Release 
Post-

Release 
Difference 

Time 

Spent 

Negative 

North Middle - Inshore Shallow-Shallow 6.29 E03 -1.22 E02 1.85 E02 22 

Deep-Deep 3.79 E03 -8.62 E03 1.24 E02 23 

Offshore - 

Middle 
Shallow-Shallow 4.24 E03 -8.52 E03 1.27 E02 50 

Deep-Deep 1.54 E03 -2.98 E03 4.53 E03 40 

South Middle - Inshore Shallow-Shallow 6.45 E03 -2.00 E02 2.71 E02 27 

Deep-Deep NA NA NA NA 

Offshore - 

Middle 
Shallow-Shallow 6.38 E03 1.00 E03 5.52 E03 0 

Deep-Deep NA NA NA NA 
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2.4.4 Hyporheic Flow Contour Maps  

 During the spawning season, the overall direction of water flow in the hyporheic zone 

was directed upwards to the river for both north and south transects (Figures 2.3 a-d). Tight 

contours around the shallow piezometers in the offshore nests display stronger horizontal 

movement directed inshore. Similarly, contours surrounding the inshore piezometers indicated 

flow in an offshore direction. Post-water release contour maps of both transects display 

downward vertical flow of stream water into the river substrate. During both high- and low-water 

conditions, direction of water flow was predominantly vertical (Figures 2.3 e, f).   

2.4.5 Changes to Temperature with Water Release    

 At the start of the monitoring period, the average daily temperature of water in all 11 

piezometers was >6.0 °C on October 28th, 2016, while temperature of water measured in the 

river level logger (just above the substrate over the spawning area) was 7.4 °C (Table 2.3). Water 

temperatures in all piezometers declined slowly from October to January, consistent with 

decreasing air and river temperatures, but did not exhibit the diel fluctuations typical above the 

river substrate. All temperatures remained above 3.7 °C before the water release event. Water 

temperature recorded at the bottom of the river exhibited sharp diel fluctuations related to 

changes in air temperature, and reached a lowest temperature ~1.5 °C before the water release 

event on January 10th, 2017. All temperatures then declined during the water release event and 

were impacted for periods that differed based on the position and depth of the piezometer (Table 

2.3). Temperature reductions were less severe and shorter in duration for the piezometers that 

were deeper and furthest from shore. For example, the NOD piezometer decreased in 

temperature from 5.2 to 4.6 °C during the event, while at NIS it decreased from 4.1 to 0.3 °C, 

and the change lasted ˃53 h at ˂1 °C (temperatures were still ˂1 °C at time when piezometers 
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were disrupted by ice flows). Similarly, temperature at SOD decreased from 5.4 to 5.0 °C, while 

at SIS it decreased from 5.0 to 0.1 °C, and the change lasted 48 h at ˂1 °C. Temperature at the 

bottom of the river also decreased from 1.5 to 0.2 °C during the water release event. 

Table 2. 3 Temperature (°C) in piezometers and the river level station at the Brook Trout 

spawning area, pre-and post water release and duration (h) <1°C. 

 

Transect Nest Piezometer 

Temperature (°C) during  
Duration 

(h) spawning 

season 
pre-release post-release 

  River Station 7.4 1.5 0.2 >53 

North Inshore Shallow 7.4 4.1 0.3 >53 

Deep 7.0 5.1 0.9 15 

Middle Shallow 6.1 5.2 0.9 20 

Deep 6.1 5.2 3.5 0 

Offshore Shallow 6.1 5.3 1.8 0 

Deep 5.7 5.2 4.6 0 

South Inshore Shallow 7.2 3.7 0.5 48 

Deep 6.4 5.0 0.1 35 

Middle Shallow 6.1 5.4 0.4 25 

Deep NA NA NA NA 

Offshore Shallow 6.1 5.1 2.0 0 

Deep 6.1 5.4 5.0 0 
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a) North Transect during spawning period b) South Transect during spawning period  

      October 28th, 2016        October 28th, 2016 

 
 

 c)  North Transect pre-water release  d) South Transect pre-water release 

    January 10th, 2017        January 10th, 2017 

 
 

e)  North Transect post-water release  f)  South Transect post-water release 

    January 12th, 2017        January 12th, 2017 

  
 

 

Figure 2. 3(a-f). Cross-sections of north and south transects through the Brook Trout spawning 

area, facing upstream during spawning season (October 28th, 2016), pre-water release (January 

10th) and post water release (January 12th). Solid circles indicate the location of piezometers in 

the river channel. River levels (m below common datum, dotted line), estimated isolines, and 

general direction of flow. (Water flows light towards dark.) The South Middle Deep piezometer 

data was discarded due to a faulty sensor. 
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2.4.6 Brook Trout Drift 

The daily percent of Brook Trout fry caught from the end of April to the beginning of 

May during 2010-2016 suggests that the earliest peak emergence occurred on April 21st, 2010 

and the latest peak occurred on May 11th, 2011 (Figures 2.3 a-g). River temperature during peak 

emergence ranged from 1.4 °C in 2013 to 6.1 °C in 2012. River temperature was just above 

freezing at the beginning of each drift net season and increased through April and May. The 

corresponding redd temperatures ranged from 3.4 °C in 2014 to 5.2 °C in 2012. Redd 

temperature varied between 4.0 and 6.0 °C at the beginning of each net season. Redd temperature 

trended upwards or downwards towards river temperature when discharges from the LLCD 

occurred, and tracked river temperature when flows were high or increasing (Figures 2.4 b-f).  

  Before larval emergence, flow varied between 20 and 40 m3s-1. By mid to late April, 

flow gradually increased except in 2010 and 2016. Flow during the emergence period appeared 

to be influenced by discharge over LLCD and/or the spring freshet, and varied greatly from year 

to year, ranging from below 20 to above 100 m3/s. 
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Figure 2. 4 (a-g). Results of drift netting efforts on the Aguasabon River, 2010–2016. Daily 

percent of fry caught each year (purple, right axis), mean daily redd temperature (blue, left axis), 

mean daily ambient river temperature (green, left axis), and approximate discharge at spawning 

site (red, right axis). 
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2.5 Discussion 

 Rapid increase in river level resulted in the reversal of vertical (VHG) and horizontal 

gradients (HHG) up to 1.8 m below the river substrate in the hyporheic zone. The area around 

Brook Trout redds changed from upwelling to downwelling conditions, likely because surface 

water infiltrated the substrate. Similar results were observed on the Nipigon River, a Northern 

Ontario river modified for hydroelectric power generation, which is also known for upwelling 

environments used by spawning Brook Trout and other salmonids (Curry et al. 1994). In this 

study, I confirmed the presence of upwelling water in the hyporheic zone at the only known 

Brook Trout spawning site on the Aguasabon River. Elsewhere, groundwater discharge creates 

stability in temperature and is essential for creating ideal spawning and incubation habitat for 

Brook Trout eggs (Snucins et al. 1992, Curry and Noakes 1995). Indeed, the presence of  

upwellings in a river’s hyporheic zone is a main factor in selection of spawning sites by Brook 

Trout (Webster and Eiriksdottir 1976, Witzel and Maccrimmon 1983b). Constant discharge of 

warm (>3.7 °C) water onto Brook Trout redds is likely essential for protection against colder 

ambient stream temperatures (<1 °C) that occur in the winter season. 

Groundwater discharge into rivers is typically maximized at the shoreline and declines 

with distance offshore (Winter 1974, Pfannkuch and Winter 1984, Curry et al. 1994). For the 

Aguasabon River, this pattern does not generally hold. Shallow water discharge in the substrate 

was strongest in piezometer nests furthest from shore, likely due to the straightening of the 

original river channel, which altered the location of the shoreline interface between surface water 

and the river bed. The artificial bank that exists now acts as a barrier between the flowing river 

and the adjacent oxbow (former river channel). The presence of the artificial bank likely 

decreases groundwater potential at the current shoreline–surface water interface, where it likely 
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flows horizontally to the river, forcing groundwater to enter the river at deeper locations. Also, 

HHG indicated flows from further offshore were directed inshore. The position of the oxbow 

presents a challenge for understanding the horizontal flow of groundwater or surface water 

between it and the river, and for this reason further discussion of horizontal flow requires more 

information than what is presented here. At the same time, a unique opportunity exists to study 

effects of discharge over a control structure where an artificial bank downstream makes vertical 

flow relatively more important in determining upwelling and downwelling conditions in the 

hyporheic zone, a phenomenon that likely creates Book Trout spawning habitat.  

Interstitial water conditions are determined by the source of water that dominates redd 

environments. The reversal flow in the hyporheic zone altered thermal interstitial water 

conditions and may have altered other physical and chemical conditions in the hyporheic zone. 

Such conditions include pH, dissolved oxygen and specific conductance all of which have been 

shown to influence the timing and success of hatching and emergence in salmonid eggs (Merz et 

al. 2004; Soulsby et al. 2009; Sternecker et al. 2013).  

Water temperature in all piezometers in the Aguasabon River were affected by the water 

release at the LLCD. Depending on the distance of the redd from shore and its depth in the 

substrate, incubating Brook Trout eggs in a redd could experience varying degrees of cooling 

due to water release. Declines in temperature during the incubation period may lead to delayed 

hatching times or reduced hatching success depending on the stage of development (Murray and 

Beacham 1986, 1987, Murray and McPhail 1988, McCullough 1999a). In the Aguasabon River, 

historical redd temperature is consistent from hatching to larval emergence (2010−2016), at ~5 

°C with small fluctuations within and between years. Consistent temperature likely leads to some 

consistency in the timing of peak emergence of Brook Trout (McCullough 1999). 



41 

 

The trigger for emergence of Brook Trout and other salmonid species may be a 

combination of environmental cues, including decreases or increases in dissolved oxygen, flow, 

temperature and sediment in redds, and/or the presence of predators (Godin 1981, Witzel and 

MacCrimmon 1981, Mirza et al. 2001). Increasing and peak Brook Trout emergence on the 

Aguasabon River follows some general trends in response to environmental conditions. A 

general trend among years is that it increases with increasing river temperature, but it is not clear 

if Brook Trout emergence is signalled by a specific river temperature. Flow estimated at the 

Brook Trout spawning site for the emergence periods does not follow a typical spring freshet 

regime. Sudden increases or decreases in flow occur over short time periods rather than a more 

typical increase and decline in flow over a period of several weeks. Determining emergence 

patterns is complicated, as the number of Brook Trout fry caught each day is likely being 

influenced by the cross-sectional wetted area that is sampled on a given day. For example, during 

high flows, drifting alevins hold a greater chance of evading capture, simply by having access to 

more drifting area around the opening of drift nets. During low flows, discharge may be too 

weak, allowing emergent Brook Trout to swim upstream. If Brook Trout emergence has any 

dependency on thermal, physical or chemical cues in spring, then increasing or decreasing 

discharge may play a role in triggering the emergence of Brook Trout on the Aguasabon River.             

2.6 Conclusion  

River depth over the spawning area in October and November influences the availability 

and locations of potential spawning redd sites for Brook Trout on the Aguasabon River. 

Generally, on the Aguasabon River, discharge at the LLCD is lower during spawning season 

when redd sites are being selected, and higher after the water release in January. Since the 

Aguasabon River is operated as a winter reservoir, discharge events at LLCD in January allow 
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high water levels and flows to persist, altering the hyporheic flow conditions of downstream 

habitats such as Brook Trout redds for some time. This potential ecological trap involves 

substantially different hyporheic redd conditions beginning midway through the incubation 

period, relative to conditions that existed at the time of spawning site selection by brook trout. In 

fact, in the region, low river levels during October generally result in increased potential for 

groundwater flow, which may amplify the thermal and chemical gradients that Brook Trout 

select (Curry et al. 1994, Curry and Noakes 1995). However, emergent (drifting) Brook Trout 

have been seen and documented each year on the Aguasabon river since 2010, so the impacts are 

likely not large.  
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Chapter 3. Effects of a Prolonged Cold Treatment on Brook Trout Hatching, 

Emergence, and Survival 

3.1 Abstract 

Many northern Canadian Shield river systems are managed for water diversion, storage, 

and power generation. Regulation of river flow can alter groundwater potential in the hyporheic 

zone downstream of control structures, including near habitats used by Salmonid species for 

spawning. The effects of this altered potential on hyporheic water temperature, as well as the 

subsequent impact on Brook Trout incubation, are not well known generally nor site-specifically 

in Canadian Shield Rivers. This study simulated water temperature changes associated with a 

winter dam release on incubating Brook Trout embryos. A cold treatment lasting 40 h at 

temperatures <1 °C was imposed on incubating Brook Trout eggs, and the survival and time to 

hatching and emergence of Brook Trout were monitored. The severity and duration of the cold 

treatment re-create the most severe case of water release documented at the Long Lake Control 

Dam on the Aguasabon River, near Terrace Bay, Ontario. The cold treatment had no effect on 

mortality for incubating Brook Trout eggs (n = 1020) compared to control (n = 1020). Survival 

from fertilization to hatching was high for both treatment and control replicates (>90%), but was 

considerably lower for fertilization to emergence (55%). There was no difference in the 

development time from fertilization to emergence of alevins, but the cold treatment had a 

statistically significant impact on time from fertilization to hatching. Despite this significant 

result, in the context of water management on the Aguasabon River, a delay in hatching of <1 d 

is not likely to be ecologically significant. 
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3.2 Introduction 

Manipulation of flow for hydroelectric power generation has been shown to alter the 

chemical and physical nature of water in the hyporheic zone of rivers (Curry et al. 1994, 

Malcolm et al. 2004, Sawyer et al. 2009). In Canada, hydropower generation often occurs on 

rivers where Salmonid species such as the Brook Trout (Salvelinus fontinalis) require the 

hyporheic zone for spawning and incubation during winter months. The Brook Trout is a 

managed sport fish in Ontario and requires cold, clean, and well oxygenated water to survive. 

These characteristics make it a useful indicator species of stream health in their native range 

(Tefft 2013).  

Water temperature is an important factor driving Salmonid egg development (Tang et al. 

1987), and Brook Trout are no exception. Many studies demonstrate that small changes in 

temperature have an effect on recruitment, development, and emergence of Salmonid alevins 

(McCullough 1999). Most studies that investigate this effect do so for the purpose of optimizing 

hatchery conditions (Beacham and Murray 1990, Marten 1992, Wagner et al. 2006). However, 

very few studies attempt to describe the effect on incubating eggs of varying temperature that 

may occur naturally or by human interference in rivers (Neitzel and Becker 1985, Tang et al. 

1987). This research is necessary where hydroelectric development may alter natural stream 

temperature regimes (Sawyer et al. 2009). 

The optimum temperature for Brook Trout incubation is 6 °C (Hokanson et al. 1973). 

Experiments with lower and constant incubation temperatures reveal reduced survival at 1 °C for 

Coho Salmon (Oncorhynchus kisutch) and at 4 °C for Pink (Oncorhynchus gorbuscha), Chinook 

(Oncorhynchus tshawytscha), Chum (Oncorhynchus keta), and Sockeye Salmon (Oncorhynchus 

nerka; Murray and McPhail 1988). Atlantic Salmon (Salmo salar) embryos and alevins are 
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tolerant of colder temperatures (0.5 °C) for several months during their incubation period 

(Kazakov 1971). Brook Trout are a fall spawning species, where they must tolerate lower 

thermal tolerance limits during the incubation period. Elsewhere, the lower limits for hatching in 

Brown Trout (Salmo trutta), Arctic Char (Salvelinus alpinus) and Brook Trout have been 

recorded at <1 °C, with survival reduced by cold treatment (Humpesch 1985). Tang et al. (1987) 

demonstrated 100% egg mortality for Coho Salmon when incubated at a constant temperature of 

0.6 °C, but no increase in mortality when eggs were cold treated from 3.5 to 0.1 °C for 8 h, even 

at early development stages. Declines in temperature from 10.0 °C to 0.1 °C for 8 h in laboratory 

dewatered redds did not reduce survival of eggs, embryos or alevins of Chinook Salmon (Neitzel 

and Becker 1985). It appears that Salmonids can withstand a threshold combination of low 

temperature and duration of cold before survival is affected. 

The Aguasabon River, north of Terrace Bay, Ontario, supports a population of Brook 

Trout that is constrained between the Long Lake Control Dam (LLCD) and the Aguasabon 

Generating Station on Hays Lake. This population receives special attention in the Aguasabon 

River Water Management Plan due to its species-specific spawning requirements, limited 

spawning habitat in the main channel of the river, and the vulnerability of that habitat to 

upstream water management. The flow regime of the river is influenced by controlling discharge 

from the LLCD approximately 12 km upstream from the only known Brook Trout spawning area 

in the main channel. Changes in discharge during winter are correlated with temperature at a 

Brook Trout spawning redd (Figure 3.1). The Ontario Ministry of Natural Resources and 

Forestry has been monitoring temperature 5-10 cm below the substrate in a Brook Trout 

spawning redd since 2006. Brook Trout alevins emerge from the gravel in April-May at the study 
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site from redds created during spawning in October (Chapter 2). This period conforms to the 

incubation time of Brook Trout from fall to spring in many Lake Superior tributaries.  

Increases of discharge of the LLCD are associated with long term (1-3 d) declines in 

temperature at the Brook Trout redds, most commonly occurring in January (Figure 3.1), when 

the larvae are in the stage between eye-up and hatching. I hypothesize that Brook Trout 

development is influenced by cold (<1 ºC) for a period >1 d if the treatment occurs during this 

eye-up to hatching stage. The objective of an experiment in the Dorion Fish Culture Station, 

Dorion, Ontario was to simulate cold treatment equivalent to a temperature change experienced 

near redds of the Aguasabon River. I predicted that cold treatment would not decrease the 

survival of Brook Trout, but would delay development to hatching and emergence compared to 

eggs that did not experience a cold treatment.  

 

 

Figure 3. 1. Brook trout red temperature (dashed line) and ambient temperature (grey line) in the 

Aguasabon River, Ontario plotted with discharge (solid line) at the LLCD in winter 2013. 
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3.3 Methodology  

3.3.1 Experimental Rationale 

 Flow regulation at the LLCD was plotted with redd temperature during the Brook Trout 

incubation period (October−April) for the period 2006−2016. The goal was to show declines in 

temperature and recovery to ambient temperature (h) experienced at the redds. The worst-case 

cold treatment across years was selected for the experiment. The timing of the treatment was 

early January to match the development stage of Brook Trout at the time they experience 

temperature declines at their redds in the Aguasabon River. Because all spawning by Brook 

Trout on this river is completed by the end of November (Ray Tyhuis, personal communication), 

all eggs had reached the eye-up stage, but had not hatched, at the time of increased discharge 

associated with water level management each year on the Aguasabon River.     

3.3.2 Experimental Design 

 The Dorion Fish Culture Station uses a gravity flow-through system to supply water for 

hatchery operations. All water to the hatchery is supplied by a spring-fed head pond. The 

experimental apparatus was placed on plastic stands inside an emptied tank in an isolation room 

(Figure 3.2). The number of replicates (incubation boxes), 12 per treatment and control, was 

based on a power analysis to detect a 1.5% decrease in survival based on (n = 6) observations 

Each replicate used 85 eggs; this was a manageable number to permit the determination of the 

fate of each individual egg every few days. 

 Brook trout eggs were obtained from the Dorion Fish Culture Station, Red Lake strain, 

whose origin is a relatively large watershed that should encompass genetic variation similar to 

what exists across Northwestern Ontario. Eggs were fertilized using the wet method, disinfected 

with ovodine, and water hardened. Eggs from different fish were not pooled; instead, sperm from 
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only one male and eggs from only one female were mixed together. This was done 12 times, 

from 12 different pairs of fish (gametes). Each mating event was split, half going to a control 

replicate paired with a treatment replicate to which the other half went, to create 12 box pairs 

with eggs from the same broodstock pair (male and female). 

After fertilization and water hardening, the eggs were placed during the same day in the 

incubation boxes. Each box measured 21.5 × 21.5 × 13.6 cm and contained an insert box (20.5 × 

15.7 × 10.5 cm); both boxes were constructed from polyvinyl chloride (PVC), with a wire mesh 

screen below the insert box where the eggs were placed. The boxes were covered with lids to 

maintain dark conditions throughout incubation. The inflow pipe was extended with a 3-m pipe 

constructed from acrylonitrile butadiene styrene (ABS), to which 12 control incubation boxes 

were connected (Figure 3.2). Flow of unfiltered pond water originated from the main pipe, and 

then split to each replicate box. The inflow to each box was controlled by a turn valve. Water 

entered the incubation box, flowed up through the screened portion, and flowed out of the box 

through a standpipe. Water flow into the reservoir was controlled by an ABS valve. A second 

main ABS pipe was fitted to pipes connecting 12 treatment incubation boxes at the bottom of the 

reservoir. Water flow through each box was maintained 1.5-2.0 L/min, measured by holding a 1-

L container under the outflow and recording time with a stop-watch. Adjustments to flow were 

made as needed. 
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Figure 3. 2. Diagram of flow-through system for cold treatment experiment.     

   

3.3.3 Temperature Control 

 Control and treatment incubation boxes shared the same water, so temperatures for all 

boxes were assumed to have been the same for the entire incubation period, except during the 

40-h manipulation period (cold treatment). Water temperatures were monitored by the Dorion 

Fish Culture Station and fluctuated naturally with weather at the head pond source. The water 

temperature during cold treatment was logged using two HOBO loggers (Onset Computer 

Corporation, Bourne, MA) at the beginning of each main pipe to the control and treatment 

incubation boxes. These loggers were in place from December 20th, 2016 – January 24th, 2017. 

Temperature was reduced during the cold treatment to <1.0 °C by inserting ice blocks (frozen 

hatchery water) continuously into the reservoir above the treatment boxes for the 40-h period. 

The environment for the incubating eggs in the treatment boxes was returned to station water 

temperature as soon as the cold treatment was complete. 

3.3.4 Hatching and Emergence 

 Incubation boxes were examined three times weekly to count and remove dead eggs until 

hatching. Once eggs reached the eye-up stage, they were briefly removed, so the boxes could be 
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cleaned. During the cold treatment, all boxes were checked every few hours to count and remove 

any dead eggs. Once hatching began, daily observations were made to record the number and 

timing of appearance of hatched alevins. After hatching, tanks were cleaned, and newly hatched 

alevins were allowed to develop for 3.5 weeks. Boxes were checked two to three times per week 

to remove dead alevins. After 3.5 weeks, alevins were placed in a PVC ring in the center of their 

box, and buried in 3 cm of aquarium gravel. Alevins were counted and moved to larger rearing 

tanks in the Dorion Fish Culture Station daily as they emerged. Alevins were considered to have 

emerged if they were swimming in the box, resting on the gravel surface, or entered into gravel 

head first. After three days of no additional emergence, monitoring was ended, recording all non-

emergent cases as mortalities.  

3.3.5 Data Analysis 

 Mortality counts before and after the cold treatment, as well as non-emergence of alevins 

at the end of the monitoring, were compared between control and treatment with one-tailed, 

paired t-tests, pairing across boxes with eggs from the same broodstock pair assuming cold 

treatment would increase mortality. A Kaplan-Meier estimator was used to estimate mean time to 

hatching for each box and to model the control and treatment time to hatching, pooling across all 

replicates, as well as time to hatching for eggs from each broodstock pair, combining control and 

treatment. Time to hatching between the pooled treatment and pooled control K-M estimates was 

compared using a log-rank test based on the χ2 distribution. Mean time to hatching between 

family pairs was compared between control and treatment with a one-tailed, paired t-test. A 

Kaplan-Meier approach was also used to estimate mean time to emergence, and time to 

emergence was modeled and compared in the same fashion as time to hatching. Times to 

hatching and emergence were converted into growing degree days (GDD) to examine the 



51 

 

accumulated temperature unit differences between control and treatment, using a base 

temperature of 0 °C. SPSS Statistics for Windows, version 22.0 (IBM Corp. 2013) was the 

statistical software used for data analysis.  

3.4 Results 

 Increases in discharge at the LLCD corresponding to as much as 30 m3s-1 flow over the 

dam had little effect on temperature, but higher increases were associated with changes in 

temperature (Figure 3.3) The most extreme example was a water release in 2013 that raised 

discharge by 47 m3/s and lowered water temperature to 0.3 °C, a drop of 5.3 °C (Figure 3.1). 

Following this release of water, recovery to ambient temperature at the redd site took 75 h, with 

40 h at temperatures below 1.0°C. 

For the experiment, the total number of control (n = 1020) and treatment (n = 1020) eggs 

in incubation was identical, each set of 85 eggs in one of 12 incubation boxes arising from a 

distinct broodstock pair. The cold treatment was initiated on January 10, 2017 at 3:50 pm and 

lasted until January 12, 2017 at 7:50 am, creating 40 h of temperatures <1.0 °C (mean, 0.5 °C) 

for the treatment incubation boxes (Figure 3.4). The initial temperature before treatment was 

5.31 °C and the lowest temperature achieved was 0.2 °C, a difference of 5.1 °C. The temperature 

returned to ambient hatchery temperature within 5 h of the cold treatment ending. After hatching 

was complete, one replicate box failed, leaving emergence to be observed across 11 replicates. 
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Figure 3. 3. Midwinter changes in discharge at the LLCD since 2006/07, corresponding drops in 

temperature (black triangles), and recovery time (grey squares) to ambient redd temperature on 

the Aguasabon River, Ontario. Encircled is the cold treatment with the greatest decrease in 

temperature, and the longest duration experienced in January 2013 used for the hatchery cold 

treatment experiment. 

 

 

 

Figure 3. 2. Control (dashed line) and treatment (black line) temperature regimes at the                         

Dorion Fish Culture Station during cold treatment experiment (January 10th−12th, 2017). 
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3.4.1 Mortality and Non-Emergence  

          The number of eggs dying before cold treatment ranged from 0−14 and 0−20, 4.6 ± 1.1 

and 5.1 ± 1.4, and the corresponding total mortality was 56 and 61, for the control and treatment 

replicates respectively (Figure 3.5). The number of eggs dying after cold treatment to hatching 

ranged from 0−4 and 0−5, 1.6 ± 1.4 and 2.2 ± 2.0, and the corresponding total mortality was 19 

and 26, for the control and treatment replicates respectively. Thus, there were no differences in 

egg mortality between control and treatment pairs, either before or after the cold treatment was 

administered, comparing treatment to control (before treatment: t = 0.37, p = 0.33; after 

treatment: t = 1.74, p = 0.06; Appendix 2.1). In total, the control replicates had a combined 

mortality of 75 eggs (7.3%), and the treatment 87 eggs (8.5%). 

There was no difference in survival to emergence, comparing family differences between 

treatment to control (t = 0.20, p = 0.42; Appendix 2.2). Mortality associated with non-emergence 

was relatively high when compared to mortality before hatching; from the period of the 

experiment after cold treatment to emergence, the number of eggs dying ranged from 23−45 and 

9−50, 33.0 ± 2.3 and 33.0 ± 3.7, and the corresponding total mortality was 368 and 362, for the 

control and treatment replicates respectively (Figure 3.5). Total survival from initial fertilization 

to hatching was similar for the control (945 survivors, 93%) and treatment (933 survivors, 91%). 

Total survival from fertilization to emergence for the control (515 survivors, 55%) and treatment 

(516 survivors, 55%).  

3.4.2 Development Time to Hatching  

Development to hatching was significantly delayed in eggs experiencing the cold 

treatment if results were pooled for control and treatment replicates, but with a mean of <1 d 

(χ2 = 11.4, p = 0.001; Figure 3.5). The mean times to hatching for the pooled control and 
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treatment replicates were 97.1 ± 0.4 and 97.3 ± 0.4 d, respectively. Hatching started 84 d after 

fertilization and ended at 102 d for both sets of pooled replicates. Differences in time to 

hatching within gamete pairs were not statistically significant (t = 0.39, p = 0.28; Appendix 

2.3). Among the 11 replicates, eight had longer mean times to hatching for the treatment than 

for the control. The K-M estimates to hatching for the control and treatment replicates ranged 

from 95.5–99.4 and 94.5–99.0 d, respectively. Estimates of time to hatching by broodstock 

pair showed greater variation than the difference between the total pooled treatment and 

control replicates (Figure 3.6). 

3.4.3 Development Time to Emergence 

 Emergence started 132 d after fertilization for both control and treatment replicates 

and ended at 142 d in control and at 144 d for treatment replicates. There was no difference in 

time to emergence between the pooled control and treatment replicates (χ2 = 0.4, p = 0.52; 

Figure 3.7). The mean times to emergence for the pooled replicates were 137.7 ± 0.4 and 

138.4 ± 0.5 d, for control and treatment respectively. Similar to the case for hatching, 

functions fitting time to emergence as alevins had greater variation among broodstock pairs 

than the difference estimated between the pooled treatment and control replicates (Figure 3.8).   
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Figure 3. 5. Comparison of Kaplan-Meier functions fitted to hatching of Brook Trout alevins in a 

control (black line; n = 1020) and cold-treatment treatment (grey line; n = 1020) in a hatchery 

experiment. 

 
Figure 3. 6. Comparison of Kaplan-Meier functions fitted to hatching of Brook Trout alevins 

from 12 broodstock pairs. 

 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

90 92 94 96 98 100 102 104

Time elapsed from fertilization (d)

C
u
m

u
la

ti
v
e

p
ro

p
o
rt

io
n
 

h
at

ch
in

g
 a

t 
in

te
rv

al

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

90 92 94 96 98 100 102 104

C
u
m

u
la

ti
v
e 

p
ro

p
o
rt

io
n

h
at

ch
in

g
at

 i
n
te

rv
al

Time elapsed from fertilization (d)



56 

 

 

Figure 3. 7. Comparison of Kaplan-Meier functions fitted to emergence of Brook Trout alevins 

in a control (black line; beginning with n = 867 eggs) and cold-treatment treatment (grey line; 

beginning with n = 855 eggs) in a hatchery experiment. 

 

 

Figure 3. 8. Comparison of Kaplan-Meier functions fitted to emergence of Brook Trout alevins 

(beginning with n = 1722 eggs) from 11 broodstock pairs 

 

 Time from fertilization to emergence was not statistically different between treatment and 

control family pairs (t = 1.49, p = 0.14). Among the 11 replicates, seven had longer times to 

emergence in the treatment than in the control. The K-M estimates of time to emergence ranged 

from 135–140 and 136– 141 d, for the control and treatment replicates respectively. After the 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

132 134 136 138 140 142 144

C
u
m

u
la

ti
v
e 

p
ro

p
o
rt

io
n
 

em
er

g
in

g
 a

t 
in

te
rv

al

Time elapsed from fertilization  (d)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

132 134 136 138 140 142 144 146

C
u
m

u
la

ti
v
e 

p
ro

p
o
rt

io
n
e 

em
er

g
in

g
 a

t 
in

te
rv

al

Time elapsed from fertilization  (d)



57 

 

same number of calendar days, the cold treatment reduced the number of GDD by 6.5 

temperature units in the treatment replicates. Accounting for the temperature of water in the 

Dorion Fish Culture Station, estimates of the mean number of GDD taken by alevins to hatch 

and to emerge were 765.6 for control and 764.7 for treatment replicates (Appendix 2.5). The 

ranges in temperature units to hatching for the control and treatment replicates were 528–549 and 

521–542 GDD, respectively; to emergence, they were 750–774 and 755–783 GDD, respectively. 

3.5 Discussion 

 The cold treatment in the Dorion Fish Culture Station experiment had no effect on 

survival of incubating Brook Trout eggs. This result is similar to what has been reported from 

other cold treatment experiments on other Salmonids (Peterson et al. 1977, Neitzel and Becker 

1985, Murray and Beacham 1986, Tang et al. 1987). For example, Tang et al. (1987) assessed 

the effects of abrupt temperature reductions of as much as 6.1 °C for 8 h on Coho Salmon 

survival. Eggs at four different developmental stages, including a “just before hatching” stage, 

were transferred from constant temperatures ranging 1.5–10.2 °C; these shorter-term temperature 

reductions did not reduce egg survival, except when temperature changed from 10.2 to 4.1 °C 

(the maximum tested). Murray and Beacham (1987) tested effects of temperature reductions 

from both 8 and 12 °C down to 1 °C until hatching on Pink Salmon eggs at various development 

stages, and found that cold treatment had no effect on survival to hatching, but that the larger 

temperature reduction at the pre-hatch stage did reduce survival of hatched alevins. It is possible, 

then, that cold treatments occurring just before hatching do not affect Salmonid egg survival, 

except when initially incubated at relatively high temperatures (10–12 °C). In the Aguasabon 

River, neither spawning nor midwinter redd temperatures were monitored at ˃6 °C (Chapter 2), 
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so it would be unlikely that incubating eggs experience initial temperatures high enough to cause 

mortality during even the most extreme cold treatment recorded in winter.  

 In the cold treatment, survival to hatching was high for both treatment and control 

replicates (>90%), but was considerably lower to emergence (55%). The methodology used to 

determine emergence involved burying the alevins, requiring them to “emerge” from the gravel. 

The resulting survival rates were similar to those of other experiments using similar emergence 

monitoring. For example, Hausle and Coble (1976) recorded survival from egg deposition to 

emergence of 59% in Brook Trout. In another study, eggs buried in homogeneous gravels of 4.2 

mm achieved 14% and 20% survival to emergence, in Brook Trout and Brown Trout 

respectively; and in gravels of 9.2 mm, survival was 79% and 61% to emergence, respectively 

(Witzel and MacCrimmon 1983a). Different mixes of sand and gravel where eggs are buried 

(e.g., in natural redds) likely affect survival to emergence more than the cold treatment delivered 

by the Dorion Fish Culture Station experiment. 

 Cold treatments may negatively impact survival of Salmonids if they occur during 

fertilization, or up to 72 h after fertilization, if this period includes the water hardening stage 

(Wagner et al. 2006). This is a critical period, because the eggs are in the blastula stage and are 

more sensitive to temperature changes (Vernier 1977). In the Aguasabon River, Brook Trout 

spawn between October and November, and water hardening would occur as soon as the eggs are 

laid and fertilized in redds. Cold treatment induced by river regulation typically occurs in 

January, and at this time Brook Trout eggs will have completed the eye-up stage, and are more 

resilient to changes in temperature. If increases in discharge at the LLCD occur during spawning, 

when ambient river temperature is typically above temperature at the Brook Trout redds, a cold 

treatment induced by an increase in discharge would be unlikely at the water hardening stage. 
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The Dorion Fish Culture Station experiment reinforces the idea that Brook Trout are resilient to 

long-term cold treatments (up to 40 h) that occur later in development between the eye-up stage 

and hatching. 

 Temperature is a major factor influencing development from fertilization to hatching and 

emergence in salmonids (Tang et al. 1987, Murray and McPhail 1988, McCullough 1999b). The 

cold treatment tested at the Dorion Fish Culture Station had a statistically significant impact on 

time from fertilization to hatching. In a biological sense, a delay in hatching of <1 d does not 

warrant concern for recruitment by water managers. The variation in timing to hatching and 

emergence among progeny from different broodstock pairs, when compared to control and 

treatment differences, indicates that genetic differences must influence development timing more 

than a cold treatment of the magnitude tested (Appendixes 2.4, 2.5). Elsewhere, it has been 

shown that greater variation in time to hatching between different strains of Brook Trout can 

occur at both cold and warm incubation regimes (Baird et al. 2002).  

 The Aguasabon River typically receives a single cold treatment during winter if a cold 

treatment occurs at all, a result of the system being managed as a winter reservoir. Water is 

stored behind dams during periods of high flow and is released during periods of low flow (i.e., 

during winter months) for power generation. Other managed river systems may experience 

differences in the magnitude, frequency, duration, and timing of flow releases. For example, in 

peaking systems power is produced during periods of peak power demand, resulting in highly 

variable daily flows (Haxton et al. 2015). Constant ramping of flow is likely to impact the 

temperature regime of upwelling spawning habitat during winter, and may have greater 

implications for recruitment of Brook Trout (Curry et al 1994).    
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3.6 Conclusion  

In the context of water management on the Aguasabon River, the results of the reporting 

of historical data and the experiment in the Dorion Fish Culture Station indicate that current 

practices of water discharge do affect the temperature of Brook Trout spawning habitat 

downstream of the LLCD control structure, but perhaps not incubating Brook Trout. These 

results may translate to other river systems with fall spawning in upwelling environments. 

Hydropeaking regimes on other rivers, such as the Nipigon River, may receive many more cold 

treatment events than the Aguasabon River, which may have greater impacts on the timing of 

hatching and/or emergence of Brook Trout or other Salmonids.     
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Chapter 4. Thesis Conclusions 

This thesis demonstrated how river regulation alters hyporheic flow onto Brook Trout 

redds in a Canadian Shield river. Vertical flow was reversed in the hyporheic zone, switching the 

river from upwelling to downwelling conditions. In the Aguasabon River, severity and duration 

of vertical flow alterations were more exaggerated in nearshore and shallow piezometer locations 

near redds than at offshore and deeper locations. The reversal of hyporheic flow caused colder 

surface water to infiltrate the substrate at the redds, and reduced the redd temperatures as well as 

substrate temperatures at 1.8 m below the river bottom. Historical analysis of the relationship 

between redd temperature and water release during Brook Trout incubation periods reveals that 

temperature changes had increasing severity and duration when larger midwinter water releases 

occurred at the Long Lake Control Dam. The results of an experiment at the Dorion Fish Culture 

Station demonstrate the resilience of Brook Trout eggs to cold water treatment after the eye-up 

stage, and gives confidence to Ontario Power Generation that current water management 

practises likely have minimal impacts on Brook Trout eggs in the Aguasabon River. However, a 

significant delay in the development of cold treated hatchery eggs suggests caution to water 

management planners on other regulated river systems, for example those that use peaking 

regimes, where more frequent and severe water releases may induce chronic effects on 

ecological processes in the hyporheic zone.             

 Water management planning on the Aguasabon River should proceed cautiously, 

because there is still only one known spawning area in the main channel of the river. Further 

research should focus on determining if the spawning site is in fact the only one in the main 

channel. Telemetry studies should continue with a focus on tracking Brook Trout during the 

months of September to November. One knowledge gap that still exists is the effect of water 
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release on the interstitial water quality of redds in terms of dissolved oxygen, pH and 

conductivity, since these are also important factors influencing Brook Trout recruitment from 

fertilized eggs (Curry et al. 1994). With the knowledge gained from this thesis on the direction of 

hyporheic flow under normal and increasing water conditions, inferences can be made regarding 

various interstitial water conditions and their impacts on incubating Brook Trout eggs. Another 

gap is the relationship between discharge at the Long Lake Control Dam and the water level over 

the known spawning area. Long-term monitoring of water level at the spawning area should 

continue in order to produce a rating curve for the spawning site.    
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Appendix 1 

Appendix 1. 1 Mean hydraulic conductivity (mm s-1) of substrate at shallow and deep 

piezometers for north and south transects inserted at the Brook Trout Spawning area on the 

Aguasabon River, August 2017, and expected substrate (Halford, Kuniansky 2004). 

Piezometer 

 

 Conductivity 

 

 

Expected Substrate 

 

NIS 4.2 E01 Coarse Sand 

NID 2.9 E02 Fine Sand 

NMS 4.1 E02 Fine Sand 

NMD 7.3 E01 Coarse Sand 

NOS 2.3 E01 Medium Sand 

NOD 8.4 E01 Coarse Sand 

SIS 2.6 E01 Coarse Sand 

SID 1.3 E02 Fine Sand 

SMS 2.1 E01 Medium Sand 

SMD 5.5 E01 Coarse Sand 

SOS 3.5 E01 Coarse Sand 

SOD 2.3 E02 Fine Sand 
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Appendix 1. 2 North Transect vertical gradients between the shallow - river (red), deep – river 

(green), deep - shallow (blue) piezometers in the offshore (A), middle (B), inshore (C), nests for 

a portion of the spawning period (Oct 28th – Nov 3rd, 2016) and the water release event at the 

LLCD during the Brook Trout Incubation period (Jan7th – Jan 13, 2017) 
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Appendix 1. 3. South transect vertical gradients between the shallow - river (red), deep – river 

(green), deep - shallow (blue) piezometers in the offshore (A), middle (B), inshore (C), nests for 

a portion of the spawning period (Oct 28th – Nov 3rd, 2016) and the water release event at the 

LLCD during the Brook Trout Incubation period (Jan 7th – Jan 13th, 2017) 
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Appendix 1. 4. North transect vertical flux between the shallow – riv8er (red) and deep – shallow 

(blue) piezometers in the offshore (A), middle (B), inshore (C), nests for a portion of the 

spawning period (Oct 28th – Nov 3rd, 2016) and the water release event at the LLCD during the 

Brook Trout Incubation period (Jan 7th – Jan 13, 2017) 
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Appendix 1. 5 South transect vertical flux between the shallow – river (red) and deep – shallow 

(blue) piezometers in the nearshore, middle and offshore nests for a portion of the spawning 

period (Oct 28th – Nov 3rd, 2016) and the water release event at the LLCD during the Brook 

Trout Incubation period (Jan7th – Jan 13, 2017) 
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Appendix 1. 6. North transect horizontal gradients between the nearshore shallow – middle 

shallow (red), nearshore deep – middle deep (blue), middle shallow – offshore shallow (green), 

middle deep – offshore deep (purple), piezometers for a portion of the spawning period (Oct 28th 

– Nov 3rd, 2016) and the water release event at the LLCD during the Brook Trout Incubation 

period (Jan7th – Jan 13, 2017) 

 

 

 

Appendix 1.7 South transect horizontal gradients between the nearshore shallow – middle 

shallow (red), middle shallow – offshore shallow (green), piezometers for a portion of the 

spawning period (Oct 28th – Nov 3rd, 2016) and the water release event at the LLCD during the 

Brook Trout Incubation period (Jan7th – Jan 13, 2017) 
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Appendix 1. 8 Hays Lake Level (m), average daily total inflow at Hays Lake(m3s-1), average 

local daily inflow (m3s-1) at Hays Lake, and the approximate flow (m3s-1) at Brook Trout 

spawning area. (OPG unpublished 2017) 

Date 

Hays Lake 

Level 

Total 

Inflow 

Local 

Daily 

Inflow 

Approximate flow 

at spawning area 

01-Oct-16 273.49 17.2 0.3 17.0 

02-Oct-16 273.40 17.9 1.3 17.2 

03-Oct-16 273.54 24.0 7.4 20.2 

04-Oct-16 273.67 22.0 5.9 18.9 

05-Oct-16 273.67 22.7 7.0 19.1 

06-Oct-16 273.60 17.8 2.4 16.6 

07-Oct-16 273.54 29.1 16.2 20.7 

08-Oct-16 273.56 25.7 15.0 17.9 

09-Oct-16 273.54 27.0 16.1 18.6 

10-Oct-16 273.48 22.7 12.0 16.5 

11-Oct-16 273.45 29.7 19.3 19.7 

12-Oct-16 273.44 28.2 16.8 19.5 

13-Oct-16 273.40 29.7 18.3 20.2 

14-Oct-16 273.29 23.5 12.6 16.9 

15-Oct-16 273.17 24.4 13.8 17.2 

16-Oct-16 273.05 23.6 12.9 16.9 

17-Oct-16 273.13 29.3 17.7 20.1 

18-Oct-16 273.32 34.0 22.4 22.4 

19-Oct-16 273.51 32.0 20.6 21.3 

20-Oct-16 273.68 27.0 15.6 18.9 

21-Oct-16 

22-Oct-16 

273.71 

273.67 

21.6 

18.8 

10.0 

7.2 

16.4 

15.1 

23-Oct-16 273.63 18.0 6.4 14.7 

24-Oct-16 273.60 17.3 5.5 14.4 

25-Oct-16 273.55 17.5 5.9 14.4 

26-Oct-16 273.51 15.8 4.2 13.6 

27-Oct-16 273.51 16.4 5.0 13.8 

28-Oct-16 273.54 17.4 6.2 14.2 

29-Oct-16 273.56 14.9 3.3 13.2 

30-Oct-16 273.57 16.1 4.5 13.8 

31-Oct-16 273.59 16.4 4.8 13.9 

01-Nov-16 273.60 15.7 5.1 13.0 

02-Nov-16 273.61 15.8 4.2 13.6 

03-Nov-16 273.62 13.8 2.2 12.7 

04-Nov-16 273.62 15.0 3.2 13.3 

05-Nov-16 273.62 14.0 2.4 12.8 
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06-Nov-16 273.62 14.0 2.4 12.8 

07-Nov-16 273.62 14.0 2.4 12.8 

08-Nov-16 273.61 13.0 1.4 12.3 

09-Nov-16 273.61 13.8 1.8 12.9 

10-Nov-16 273.61 13.8 2.2 12.7 

11-Nov-16 273.60 11.7 -0.7 12.1 

12-Nov-16 273.60 13.7 1.9 12.7 

13-Nov-16 273.59 11.7 -0.1 11.8 

14-Nov-16 273.58 12.5 0.5 12.2 

15-Nov-16 273.58 13.4 1.4 12.7 

16-Nov-16 273.57 11.4 -0.6 11.7 

17-Nov-16 273.58 16.4 4.6 14.0 

18-Nov-16 273.60 15.7 2.9 14.2 

19-Nov-16 273.60 13.8 -0.5 14.1 

20-Nov-16 273.60 13.7 0.5 13.4 

21-Nov-16 273.64 15.1 2.3 13.9 

22-Nov-16 273.75 19.0 6.2 15.8 

23-Nov-16 273.86 20.0 7.2 16.3 

24-Nov-16 273.96 18.0 5.0 15.4 

25-Nov-16 273.91 11.9 -0.9 12.4 

26-Nov-16 273.86 13.5 0.7 13.1 

27-Nov-16 273.82 12.3 -0.5 12.6 

28-Nov-16 273.79 16.6 3.8 14.6 

29-Nov-16 273.84 27.4 14.4 19.9 

30-Nov-16 273.95 37.7 24.2 25.1 

01-Dec-16 273.95 29.5 15.4 21.5 

02-Dec-16 

03-Dec-16 

273.88 

273.86 

30.0 

30.2 

16.1 

16.3 

21.6 

21.7 

04-Dec-16 273.88 30.9 16.8 22.2 

05-Dec-16 273.87 29.6 15.3 21.6 

06-Dec-16 273.88 29.8 15.5 21.7 

07-Dec-16 273.92 31.4 16.6 22.8 

08-Dec-16 273.86 24.5 9.9 19.4 

09-Dec-16 273.84 27.5 12.3 21.1 

10-Dec-16 273.77 21.4 6.4 18.1 

11-Dec-16 273.63 19.8 4.8 17.3 

12-Dec-16 273.62 24.6 9.1 19.9 

13-Dec-16 273.62 24.1 9.1 19.4 

14-Dec-16 273.57 20.7 5.9 17.6 

15-Dec-16 273.56 18.7 3.9 16.7 

16-Dec-16 273.54 23.2 8.2 18.9 

17-Dec-16 273.55 19.6 4.1 17.5 

18-Dec-16 273.54 19.0 3.8 17.0 
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19-Dec-16 273.54 21.6 6.6 18.2 

20-Dec-16 273.60 25.1 9.9 20.0 

21-Dec-16 273.60 20.3 4.8 17.8 

22-Dec-16 273.62 20.9 5.2 18.2 

23-Dec-16 273.64 27.2 11.7 21.1 

24-Dec-16 273.66 19.5 4.0 17.4 

25-Dec-16 273.65 20.7 4.8 18.2 

26-Dec-16 273.81 30.3 14.4 22.8 

27-Dec-16 273.90 24.2 8.5 19.8 

28-Dec-16 273.79 17.5 1.6 16.7 

29-Dec-16 273.84 21.5 5.3 18.7 

30-Dec-16 273.93 23.2 7.0 19.6 

31-Dec-16 273.97 22.0 6.1 18.8 

01-Jan-17 273.89 16.0 0.1 15.9 

02-Jan-17 273.86 19.2 3.3 17.5 

03-Jan-17 273.82 21.8 5.4 19.0 

04-Jan-17 273.85 21.0 4.6 18.6 

05-Jan-17 273.75 13.0 -3.4 14.8 

06-Jan-17 273.71 20.6 4.4 18.3 

07-Jan-17 273.69 17.6 1.4 16.9 

08-Jan-17 273.59 16.0 -0.2 16.1 

09-Jan-17 273.55 19.8 3.6 17.9 

10-Jan-17 273.54 24.5 8.3 20.2 

11-Jan-17 273.52 20.0 3.3 18.3 

12-Jan-17 273.59 58.0 24.5 45.3 

13-Jan-17 273.64 68.9 2.9 67.4 

14-Jan-17 273.70 66.0 1.1 

 

65.4 
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Appendix 2 

 

Appendix 2. 1 Summary of mortality in Brook Trout eggs (n = 2040) from 12 broodstock pairs 

in a controlled (black bars) and a cold-treatment treatment (grey bars) in a hatchery experiment, 

before (1-70 d) and after (71-104 d) the 40-h treatment was administered on January 10, 2017. 

 

 
Appendix 2. 2 Summary of non-emergence in Brook Trout alevins (n = 1743) from 11 

broodstock pairs in a controlled (black bars) and a cold-treatment treatment (grey bars) in a 

hatchery experiment, after (70-144 d) the 40-h treatment was administered on January 10, 2017 
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Appendix 2. 3 Summary of Kaplan-Meier estimates of mean time to hatching for Brook Trout 

alevins (starting with n = 2040 eggs) from 12 broodstock pairs in a controlled (black bars) and a 

cold-treatment treatment (grey bars) in a hatchery experiment.  

 
 

.  

 

 

Appendix 2. 4 Summary of Kaplan-Meier estimates of mean time to emergence from 

fertilization for Brook Trout alevins (from n = 1722 eggs) from 11 broodstock pairs in a 

controlled (black bars) and a cold-treatment treatment (grey bars) in a hatchery experiment 
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Appendix 2. 5 Kaplan-Meier estimates of hatching and emergence expressed as accumulated 

temperature units (growing degree days: GDD). 
 

Hatching GDD Emergence GDD 

Family Control treatment control Treatment 

1 543.4 542.3 749.9 755.0 

2 532.6 526.1 755.5 761.1 

3 543.4 542.3 774.4 782.9 

4 548.8 542.3 767.6 767.9 

5 543.4 531.3 767.6 782.9 

6 543.4 521.3 NA NA 

7 527.8 526.1 767.6 767.9 

8 532.6 521.3 761.5 761.1 

9 532.6 531.1 767.6 755.0 

10 532.6 526.1 774.4 767.9 

11 532.6 536.9 767.6 755.0 

12 537.9 542.3 767.67 755.0 

Mean 

Standard Error 

537.6 

(+/- 1.9) 

532.5 

(+/- 2.5) 

765.6 

(+/-2.2) 

764.7 

(+/- 3.15) 

 


