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Abstract
Using 10 m diameter mesocosms in a Canadian boreal lake, we investigated the effects of microplastic (MP) exposure on

the body weight and diet of yellow perch (Perca flavescens) and the fatty acid composition of yellow perch and zooplankton.
We exposed the aquatic ecosystem within seven mesocosms for 10 weeks to a mixture of polyethylene, polystyrene, and
polyethylene terephthalate fragments, ranging in nominal addition concentrations from 6 to 29 240 particles L−1 (although
realized water column concentrations were lower), as well as two negative controls. Increasing MP exposure did not affect
yellow perch body weight (growth) or diet, or the overall fatty acid composition of yellow perch muscle or zooplankton.
Results were highly variable across mesocosms. Despite high levels of MP ingestion by yellow perch, we did not find evidence
of MPs leading to food dilution or any other effect where we could anticipate impacts on food web structure.
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Introduction
Microplastic (MP) pollution——defined as synthetic particles

1–5000 μm along their longest dimension——is an issue of in-
creasing global concern, but scientists still have limited un-
derstanding of how these contaminants affect higher level bi-
ological processes, including predator-prey interactions and
nutrient cycling. In aquatic systems, freshwater food webs
have greater risk potential from MP pollution than their ma-
rine counterparts; many MP point sources, including sewage
and stormwater outflow, empty directly into freshwater sys-
tems, which experience less dilution than marine systems,
resulting in high localized concentrations (Li et al. 2018;
Rochman et al. 2022). Due to higher MP concentrations, fresh-
water fish are more likely to ingest MP than marine fish
(Covernton et al. 2021), and the highest reported concentra-
tions of anthropogenic microparticles (including MPs) in fish
digestive tracts to date were from a North American lake
(Munno et al. 2021). The effects of MP exposure on aquatic or-
ganisms depend on a multitude of factors, including particle
concentration, size, morphology, polymer, associated chem-

icals, as well as environmental conditions such as pH, tem-
perature, salinity, and food availability (Scherer et al. 2017;
Bucci et al. 2020; Piccardo et al. 2020; Lyu et al. 2022). Fish
have been shown to respond to MP exposure in laboratory set-
tings with reduced foraging behavior, mobility, and food con-
sumption rates, as well as increased oxidative stress (Salerno
et al. 2021; Hossain and Olden 2022), with critical thresholds
for aquatic environments proposed in the 0.5–4100 particle/L
range (Koelmans et al. 2020; Mehinto et al. 2022).

One of the leading hypotheses for how MPs might be caus-
ing harm to aquatic animals is “food dilution”, whereby MPs
replace natural food items, reducing assimilation of nutrients
and lowering caloric and nutrient intake (Foley et al. 2018;
Koelmans et al. 2020). Other proposed mechanisms of toxi-
city for MPs and associated chemicals include physical and
chemical effects in the digestive tract or following transloca-
tion into the circulatory system and organs (Ma et al. 2021). It
is likely that multiple mechanisms of toxicity occur at differ-
ent life stages, depending on routes and levels of exposure. In
the laboratory, fish are often able to tolerate concentrations
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of MPs beyond those found in aquatic environments with lim-
ited effects on mortality, body condition, and reproductive
fitness (Hossain and Olden 2022). It is, therefore, likely that
MPs directly impact fish in the wild primarily in sublethal
ways. Indirect effects are also possible. For example, lower
trophic levels exposed to MPs may assimilate fewer nutrients
due to food dilution, expend more energy due to oxidative
stress, and consume lower quality prey due to MP effects on
the zooplankton community. These effects could decrease en-
ergy flow to higher trophic levels, even without direct MP ef-
fects for these larger bodied animals (Hanazato 1998, 2001;
Mor et al. 2022). To understand the potential effects of MPs
on food web processes, it is therefore useful to look at signals
relating to the flow of energy and essential nutrients such as
changes in growth, shifts in prey composition, and fatty acid
composition.

Fatty acids are ecologically important molecules thought
to play an important role in the efficiency of energy transfer
through aquatic food webs (Brett and Müller-Navarra 1997).
They are essential for growth and reproduction and ecolo-
gists use them to assess nutritional quality of both preda-
tors and prey, especially via quantities of polyunsaturated
fatty acids (PUFA), which are fatty acids with two or more
double bonds. These include the n-6 PUFA arachidonic acid
(ARA; 20:4n-6) and its precursor linoleic acid (LA; 18:2n-6),
as well as the n-3 PUFA docosahexaenoic acid (DHA; 22:6n-
3) and its precursors eicosapentaenoic acid (EPA; 20:5n-3) and
a-linolenic acid (ALA; 18:3n-3). Mainly primary producers syn-
thesize these PUFAs. Aquatic invertebrates can modify PUFAs
and inter-convert, but fish cannot synthesize the essential
fatty acids LA or ALA and have a lesser ability than inver-
tebrates to synthesize n-6 and n-3 PUFAs with 20 or more
carbon atoms and three or more double bonds. These fatty
acids are known as highly unsaturated fatty acids (HUFAs),
including ARA, EPA, and DHA (Parrish 2009). Aquatic fish
rely on their diet for acquiring the majority of these PUFAs
(Sawyer et al. 2016). Tracking PUFA quantities can thus pro-
vide information on the nutritional quality of primary pro-
ducers, their consumers, and factors that might limit energy
transfer to higher trophic levels (Brett and Müller-Navarra
1997). Exposure to polystyrene (PS) MPs affected the fatty acid
composition of Daphnia magna in a laboratory experiment
(Silva et al. 2017; Gonçalves et al. 2021; Parolini et al. 2022).
Such MP effects on the nutritional quality of lower trophic
levels have the potential to cause cascading effects in food
webs.

To further our knowledge on how MPs might affect aquatic
food web processes, we used an in-lake mesocosm experi-
ment including naturally occurring plankton communities
and yellow perch (Perca flavescens). We hypothesized that if
MPs affected zooplankton community composition and (or)
had negative effects on their nutritional quality, then abso-
lute concentrations of fatty acids, including HUFAs that are
important dietary nutrients for predators would decline. We
further predicted that changes in zooplankton fatty acid com-
position could lead to changes in the fatty acid composition
in muscle of predatory yellow perch, including decreasing
HUFA concentrations if they are less available, or if food di-
lution limits their transfer. We asked the following primary

questions: (1) Does increasing MP exposure decrease final
body weight (as an index of mass gain) or stomach contents
(diet) in yellow perch? (2) Does increasing MP exposure af-
fect overall fatty acid composition in yellow perch and zoo-
plankton? (3) Does increasing MP exposure negatively affect
the proportional and absolute concentrations of the HUFAs
DHA, EPA, and ARA in yellow perch and zooplankton, sug-
gesting reduced trophic transfer efficiency?

Methods

Study design
Our experimental design is described in detail in Rochman

et al. (2024). In brief, nine 10 m diameter mesocosms were
constructed and placed in Lake 378 (L378) at the International
Institute for Sustainable Development Experimental Lakes
Area (IISD-ELA) in the summer of 2021. L378 is a small, olig-
otrophic boreal lake located in northwestern Ontario, Canada
(49◦41′37.88′′N, 93◦46′32.18′′W). Each mesocosm physically
separated water from the lake and consisted of a decago-
nal, floating, PS collar with a 2 m deep closed bottom,
cylinder-shaped, nonpermeable curtain, composed of food-
grade polyethylene (PE). PE pipe rings were secured to the
external surface of the curtain to maintain its shape in the
water. The mesocosms were anchored at a depth where they
would not touch bottom then filled with ∼150 000 L unfil-
tered lake water, including microbes, phyto-, and zooplank-
ton (but through mesh to exclude fish), pumped from ∼1 m
depth using a trash pump (Honda Canada) connected with a
fire hose.

To offset zooplankton mortality during pumping, the
zooplankton communities in the mesocosms were supple-
mented by collecting and adding zooplankton from 15 10 m
vertical hauls from the deepest point of L378 using a 0.5 m
diameter net with 150 μm mesh. The mesocosms were accli-
mated for 5 days, after which young-of-the-year yellow perch
were added to each mesocosm over an 11-day period. Col-
lections and euthanasia at experimental end occurred un-
der a permit from the Ontario Ministry of Natural Resources
(1097798; 4 April 2021) and an animal use protocol from the
University of Toronto (20012583; 16 February 2021) under
the Canadian Council on Animal Care Guidelines. The yellow
perch were collected from the surrounding lake using seines
and trap nets. During this addition and acclimation period,
fish mortalities in mesocosms were monitored using a sub-
mersible remotely operated vehicle. Mortality was initially
high for trap-caught fish due to handling stress, which is why
seining was subsequently employed. A similar experiment in
2022 with improved methods (seining only) and similar ac-
climation period resulted in low yellow perch mortality (un-
published data) supporting handling stress as the source of
mortality in the current experiment. During the acclimation
period, dead fish were removed from the mesocosm by free-
diving, where possible, and replaced with seine-caught fish,
resulting in 23–26 individuals in each mesocosm at the start
of the experiment. The yellow perch ranged in size from 6.0
to 9.2 cm total length and 2.0–6.9 g weight (Table S1). These
yellow perch densities reflect natural densities at the IISD-
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ELA (Hayhurst et al. 2020). Following yellow perch addition,
the mesocosms were acclimated for an additional 5 days.

On day 1 of the experiment, zooplankton densities in the
mesocosms were lower than in the surrounding lake. Be-
cause the water in the mesocosms was separated from the
rest of the lake and its nutrient inputs, and to reduce pre-
dation pressure on the zooplankton communities in meso-
cosms, the fish were fed a supplementary diet of fish food,
thawed from frozen (Hakari Bio-Pure Mysis Shrimp, Kyorin
Food Industries, Ltd., Japan). The yellow perch were fed every
3 days during the acclimation and experimental period with
a daily ration of 2% (initial) body mass (∼0.8% body mass by
the end of the experiment)——about 0.07 g per fish per day——
based on the estimated average number of surviving fish per
mesocosm and according to estimated feeding rates for yel-
low perch (Boisclair and Leggett 1989; Hayhurst et al. 2020).
This resulted in the addition of 1.26–4.80 g into each meso-
cosm at each feeding event over the course of the experiment.

On 2 June 2021 (day 0 of the experiment), equal propor-
tions (by count) of PS, polyethylene terephthalate (PET), and
linear low-density PE fragments were added to the treatment
corrals. The MPs were added to the mesocosms in amounts
that would lead to nominal concentrations of 6, 24, 100, 414,
1710, 7071, and 29 240 particles L−1 (sum of all polymers) if
all MPs mixed homogenously into the mesocosms (which was
not expected given the varying density of the particles and
the complexity of transport processes) and included two con-
trol mesocosms with no added MPs. This “regression” design
is an alternative to the “Analysis of variance” design, which
replicates at each concentration, but results in fewer concen-
trations when replicates are limited. The “regression” design
has been shown to be effective in ecotoxicological mesocosm
experiments (Liber et al. 1992), especially for determining no
effect concentrations across an exposure gradient, and when
the lower end of the concentration range has more repli-
cates (Smith and Mercante 1989), as in our design. The con-
centrations increased on a log-scale, representing MP concen-
trations found in the environment up to an order of magni-
tude beyond a 2050 “business as usual” projection of plas-
tic emissions (Dubaish and Liebezeit 2013; Geyer et al. 2017).
These nominal values can be considered loading concentra-
tions, representing MPs throughout each entire mesocosm,
but not at any specific point in the mesocosm. PE particles
were approximately 37–1086 μm in diameter, PS particles 48–
1408 μm, and PET particles 52–1408 μm. The PS was neutrally
buoyant, the PET was negatively buoyant, and the PE was pos-
itively buoyant. See Rochman et al. (2024) for a full descrip-
tion of the plastic additives. Throughout the experiment, nat-
ural (cork) floats and hemp ropes were used to avoid addi-
tional MP contamination of the mesocosms.

Bulk zooplankton samples for fatty acids analysis were col-
lected on 27 May (day -6, before additions), 6 July (day 34 of the
experiment), and 9 August (day 68), via vertical hauls to 1.5 m
with a 53 μm mesh Wisconsin plankton net with a 0.25 m di-
ameter opening, attached to a long pole to access the center
of the mesocosms. A range of one to three hauls (depending
on biomass) was collected and combined into one sample per
mesocosm, per timepoint. Separate zooplankton hauls were
also collected and analyzed to quantify cladoceran, cyclopoid

copepod, and calanoid copepod biomass for comparison with
fatty acids data (see Langenfeld (2023) for details). Zooplank-
ton composition data used for this study are from 1 June (5
days after initial zooplankton fatty acid sampling), 5 July (1
day before the midpoint fatty acid sampling), and 9 August
(the same day as the endpoint fatty acid sampling).

Throughout 14–24 August (days 73–83 of the experiment),
all yellow perch were collected and lethally sampled in a ran-
domized order but with the controls at the start and end
of the sampling period. Yellow perch were collected from
the mesocosms using a 50′ by 6′ seine net, deployed from
a small boat. The 24 particles L−1 treatment mesocosm col-
lapsed during this process and so it was not possible to re-
trieve any of the yellow perch. A range of 4–17 yellow perch
remained in each mesocosm at the end of the experiment
(Table S1). Fish were weighed, had their total length mea-
sured, then were dissected. Gonads were weighed and dorsal
muscle tissue from three yellow perch from each surviving
mesocosm was sampled for fatty acid analysis (N = 24). In
addition, digestive tracts were collected from one to seven
yellow perch per mesocosm——depending on other sampling
requirements——for stomach content diet analysis (N = 28).
The diet samples were stored at −20 ◦C until analysis. All fatty
acid samples were transported back to the IISD-ELA labora-
tory on ice then flash-frozen in liquid nitrogen. The samples
were stored in a dry shipper containing liquid nitrogen until
the end of the field season when samples were transported to
a laboratory in Winnipeg and stored at −80 ◦C. The samples
were later shipped on dry ice to the University of Toronto,
where they were again stored at −80 ◦C until analysis.

Laboratory methods
The yellow perch digestive tract samples were thawed on

a Petri dish, wetted, and then examined under a dissecting
microscope. The stomach was separated from the lower di-
gestive tract, opened, and the contents sorted using a mi-
croprobe. Individuals were identified to Order or superorder
(Cladocera, Amphipoda, Cyclopoida, Odonata) or Family (lar-
val or pupated Chironomidae).

Zooplankton samples were desiccated at −50 ◦C using
a FreeZone 2.5 L benchtop freeze dry system (Labconco,
Kansas City, MO, USA). Lipids were extracted from approx-
imately 10 mg of freeze-dried zooplankton, 60 mg of yel-
low perch dorsal muscle, and 60 mg of fish food in 2:1 chlo-
roform:methanol by a modified Folch method (Folch et al.
1957; Rotarescu et al. 2022). An internal standard of 40 mg
docosatrienoic acid (22:3n-3) ethyl ester (Nu-Chek Prep) was
included for fatty acid quantification. The resulting total
lipid extracts (TLEs) for fish food and an aliquot of the zoo-
plankton and yellow perch muscle TLEs were transesteri-
fied to fatty acid methyl esters (FAMEs) (Folch et al. 1957;
Rotarescu et al. 2022), FAMEs isolated and the analyzed by gas
chromatography-flame ionization detection, as previously de-
tailed in Klievik et al. (2023).

For the fish food, three samples of each of three pack-
ages were analyzed and overall composition was, on average,
31.4% saturated fatty acids (SFAs), 19.2% monounsaturated
fatty acids (MUFAs), 11.6% n-6 PUFAs, and 31.6% n-3 PUFAs (Fig.
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S1). ARA accounted for 3.9% of composition, on average, EPA
9.7%, and DHA 15.6%.

Data analysis
All data analysis was performed using R v4.2.2 (R Core Team

2022). Linear mixed effects models (LMMs) were fit using the
glmmTMB package (Brooks et al. 2017). Model fit was assessed
using simulated residual diagnostics with the DHARMa pack-
age (Hartig 2022). Model predictions were calculated as esti-
mated marginal means using the ggeffects package (Lüdecke
2018). Multivariate statistics were conducted using the ve-
gan package (Oksanen et al. 2022). When using nominal MP
concentration as predictor variable, we use ln(MP concentra-
tion + 6) for all models. This specific transformation of con-
centration values was used to avoid taking the log of zero
values by adding the lowest nonzero value to all concentra-
tions.

Yellow perch body weight (as a proxy for mass gain
throughout the experiment) was compared among meso-
cosms using a linear model (LM), using the lm function, with
nominal MP concentration and the number of surviving yel-
low perch in each mesocosm as continuous predictors. The
number of survivors was used as a predictor because initial
modeling with mesocosm identity as a random effect resulted
in a lack of normality in simulated residuals. The variability
in yellow perch body weight was found to be accounted for
by number of survivors. The highest and lowest mortality oc-
curring in the two control mesocosms and otherwise similar
levels of mortality in the other mesocosms suggest primarily
a mesocosm effect on mortality and supports using this as a
predictor variable alongside nominal MP concentration.

The taxonomic composition of the yellow perch stom-
achs was visualized using non-metric multidimensional scal-
ing (nMDS) with Bray–Curtis dissimilarity, calculated from
counts by taxon, using the metaMDS function. Differences
in diet according to MP exposure was assessed using permu-
tational analysis of variance (PERMANOVA), also with Bray–
Curtis dissimilarity, including fish body weight and ln(MP con-
centration + 6) as continuous predictors and mesocosm as a
blocking factor, via the adonis2 function. Samples with zero
counts for all taxa included in the analysis were left out of the
nMDS and PERMANOVA, as they cannot be included in Bray–
Curtis calculations. This excluded one of the controls from
the analysis for which we only had one empty yellow perch
stomach for analysis. Predictor significance was assessed us-
ing marginal effects, and treatment levels were compared
with the one remaining control mesocosm via sequential one-
degree-of-freedom contrasts.

Fatty acid compositional data (%) for the yellow perch and
zooplankton were first reduced in each dataset to the 14 fatty
acids with compositions of 1% or more. Differences according
to MP exposure were assessed with canonical correspondence
analysis (CCA) via the cca function. Body weight was used as
a covariate, in combination with nominal MP concentration,
for the yellow perch data (as opposed to total length) because
it resulted in a higher proportion of constrained variance.
In the zooplankton model, sampling date (days -6, 34, and
68) was included as a factor, in addition to nominal MP con-

centration, as well as estimated Cladocera, Cyclopoida, and
Calanoida biomass (μg L−1) for each mesocosm at the differ-
ent timepoints. For all CCAs, the significance of the marginal
effects of predictors was assessed using permutation testing
via the anova.cca function.

The relationships between relative and absolute concentra-
tions (mg g−1 tissue) of ARA, EPA, and DHA, as well as total
fatty acid concentrations, with nominal MP concentration for
the yellow perch and zooplankton samples were analyzed us-
ing LMM. For yellow perch, body weight and nominal MP con-
centration were used as fixed predictor variables and treat-
ment as a random variable. For the zooplankton samples, just
the days 34 and 68 were analyzed with timepoint as a fixed
predictor and nominal MP concentration as a continuous pre-
dictor and mesocosm ID as a random variable. The models all
met linear modeling assumptions according to residual diag-
nosis via DHARMa.

Results

Microplastic distribution in the water,
zooplankton, and fish

To aid with interpretation of our findings, we provide
a brief overview of data describing MP fate in the meso-
cosms. These data and the methods by which they were
collected are covered in full in Rochman et al. (2024) and
we have replicated the relevant methods from that study
in the supplemental materials (ST1). The MP water column
concentrations in the mesocosms were lower than the
nominal concentrations added to the corral for the higher
concentration additions. We measured water column MP
concentrations in three of the treatment mescosms. The
29 240 particles L−1 nominal concentration treatment had
a mean (± standard deviation) concentration of 246 (±202)
particles L−1 across time and depths, the 414 particles L−1

mesocosm 13 (±8) particles L−1, the 6 particles L−1 meso-
cosm 12 (±14) particles L−1.Zooplankton were confirmed to
ingest MPs and contained 0.06 (±0.07) particles individual−1

in the 29 240 particles L−1 mesocosm, 0.07 (±0.08) particles
individual−1 in the 414 particles L−1 mesocosm, and 0.01
(±0.01) particles individual−1 in the 6 particles L−1 meso-
cosm. The ingested particles were predominately PS and
PE. The yellow perch digestive tracts contained 581 (±37)
particles individual−1 in the 29 240 particles L−1 mesocosm,
12 (±1) particles individual−1 in the 414 particles L−1 meso-
cosm, and 1 (±0) particle individual−1 in the 6 particles L−1

mesocosm. The yellow perch ingested all particle types.

Yellow perch body weight and diet
The yellow perch grew throughout the experiment, gain-

ing an average of 5.7 g body weight; from 3.4 cm when put
into the mesocosms to 9.1 cm when taken out. The LM relat-
ing yellow perch body weight at the end of the experiment (as
a proxy for growth) to nominal MP concentration and num-
ber of surviving yellow perch was significant overall (adjusted
R2 = 0.29, F2,76 = 16.76, p < 0.001), but body weight was not
correlated with MP concentration (p > 0.6), and was nega-
tively correlated with number of surviving yellow perch in
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Fig. 1. Fit from the linear model with yellow perch final
body weight (y-axis) in relation to number of surviving yel-
low perch in each mesocosm (x-axis) and nominal microplas-
tic (MP) concentration (colors). The points represent raw data,
and the line and ribbon represent the estimated marginal
mean and 95% confidence interval holding nominal MP con-
centration (which did not significantly correlate with body
weight) at its average while varying number of surviving
perch.

each mesocosm (p < 0.001; Fig. 1). Across treatments, indi-
vidual yellow perch contained an average of 150.6 ± 284.2
(mean ± SD) ingested invertebrates in their stomachs. The
most ingested taxonomic group was Cladocera (138.2 ± 272.3
individuals), followed by Cyclopoida (9.6 ± 20.7 individuals;
Figs. S2 and S3). There was no effect of either yellow perch
body weight (F1,21 = 0.41, p = 0.89) or nominal MP concentra-
tion (F1,21 = 0.86, p = 0.46) on stomach content taxonomic
composition according to the PERMANOVA. Inspecting the
nMDS plot (Fig. 2; stress = 0.09) shows no evidence of a direc-
tional effect of MP concentration, with the highest nominal
MP concentration mesocosm close to the control in multidi-
mensional space.

Yellow perch fatty acid composition
MP exposure did not affect fatty acid composition in yel-

low perch dorsal muscle. Across all treatments, fatty acids in
yellow perch dorsal muscle were composed of 25.2 ± 0.7%
(mean ± SD) SFAs, 19.4 ± 3.5% MUFAs, 16.2 ± 1.3% n-6 PUFAs,
and 30.8 ± 2.7% n-3 PUFAs (Fig. S4). Individual fatty acids by
proportion are shown in Fig. S5. There was no relationship
between yellow perch body weight (F1 = 1.45, p = 0.23) or
nominal MP concentration (F1 = 0.27, p = 0.85) and fatty acid
relative composition according to CCA (R2 = 0.08, adjusted
R2 < 0) and post hoc permutation tests of the marginal effects
of terms. Additional analyses of the factors contributing to

Fig. 2. nMDS plot of yellow perch diet data. Hulls connect the
external points which show the position of the scores for each
individual fish for each treatment/mesocosm, which is indi-
cated by color. The blue text represents the position of the
taxon scores. The first control replicate was excluded from
the analysis, so the second control is labeled as “0(2)”. MPs,
microplastics.

variation in the yellow perch muscle fatty acids are covered
in the supplementary materials (ST2).

There was no effect of body weight or MP concentration on
relative concentrations of either DHA (z = −1.23, p = 0.22;
z = 0.51, p = 0.61, respectively) or ARA (z = −1.11, p = 0.27;
z = −0.63, p = 0.53) in yellow perch dorsal muscle. There
was also no effect of MPs on EPA (z = 0.01, p = 0.99), but
there was a positive correlation with body weight (z = 2.75,
p = 0.006), with a predicted increase of 9%–11% EPA from the
smallest to largest fish (Fig. S6). In terms of absolute concen-
trations, there was no effect of MP concentration (z = 1.01,
p = 0.31) and a weak positive effect of body weight (z = 1.74,
p = 0.08) on total fatty acids. There were no effects of either
body weight (z = 1.46, p = 0.14) or MP concentration (z = 0.92,
p = 0.36) on ARA. There was a positive correlation between
body weight and EPA (z = 2.82, p = 0.005), with a predicted
increase from 1.04 to 1.79 mg g−1 from the smallest to largest
fish (Fig. S7), but no effect of MP concentration (z = 1.02,
p = 0.31). There was no effect of body weight on DHA concen-
tration (z = 1.35, p = 0.18) but there was a positive relation-
ship between DHA and MP concentration (z = 2.96, p = 0.003),
with a predicted increase of 1.57–1.97 mg g−1 from the 0 to
29 240 particles L−1 treatments (Fig. 3).

Zooplankton fatty acid composition
There was also no effect of nominal MP concentration on

absolute concentrations of zooplankton fatty acids. Compar-
ing day 34 and day 68 of the experiment, there was no effect
of MP concentration on total fatty acids (z = 0.30, p = 0.76),
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Fig. 3. Relationship between concentration of DHA (mg g−1 tissue) in yellow perch dorsal muscle (y-axis) and nominal mi-
croplastic (MP) exposure concentration (x-axis). The points represent raw data and the line and ribbon represent estimated
marginal mean and 95% confidence interval predicted from a linear mixed effects model while holding yellow perch body
weight at 9.64 g.

but there was a higher concentration of total fatty acids at
day 68 (z = 2.79, p = 0.005), with a predicted concentration
of 71.07 mg g−1 dried sample compared with 54.33 mg g−1

at day 34. Because of this difference in total fatty acids, we
report absolute rather than relative concentrations for the
major groupings to better relate to zooplankton biomass. In-
dividual fatty acids by concentration and according to treat-
ment are shown in Fig. S8. Across all treatments, SFAs de-
creased from day -6 to day 34, then remained similar at day
68, at 31.7 ± 3.8, 17.5 ± 3.5, and 22.5 ± 4.8 mg g−1, respec-
tively (Fig. S9). MUFAs remained consistent over the three
timepoints, with concentrations of 14.3 ± 1.6, 15.7 ± 3.1,
and 13.1 ± 2.5 mg g−1. Total n-6 PUFAs decreased from day
-6 to day 34, then increased slightly by day 68, at 16.4 ± 1.7,
7.1 ± 1.7, and 11.8 ± 4.0 mg g−1. Total n-3 PUFAs also de-
creased by from day -6 to day 34, then increased again at day
68, with values of 45.3 ± 6.3, 13.1 ± 4.2, and 22.7 ± 6.7 mg g−1.
There was no effect of nominal MP concentration (F1,20 = 0.51,
p = 0.53), but a strong effect of date (F2,20 = 10.92, p = 0.001)
on zooplankton fatty acid composition according to CCA
(R2 = 0.64, adjusted R2 = 0.53) and post hoc permutation
tests of the marginal effects of terms. There was no signifi-
cant relationship between fatty acid composition and clado-
ceran (F1,20 = 0.47, p = 0.61), calanoid (F1,20 = 0.44, p = 0.58),
or cyclopoid biomass (F1,20 = 0.32, p = 0.72). Plotting the in-
dividual samples scores with treatment and timepoint cen-
troids demonstrated strong separation by timepoint, with
low spread when the zooplankton were first added, but high
spread at days 34 and 68 (Fig. 4A). Plotting the fatty acid
scores alongside the timepoint centroids and the zooplank-
ton biomass vectors primarily showed a positive association
between the MUFA 16:1n-7 (palmitoleic acid) at day 34. The
plot also suggests a positive association between ALA and
18:4n-3 (stearidonic acid) and day -6, potentially associated
with greater cladoceran and cyclopoid biomass and a nega-
tive association between ARA and 18:3n-6 (γ -linoleic acid) and
day -6 (Fig. 4B).

For the zooplankton at days 34 and 68, there was no ef-
fect of MP concentration on proportional DHA (p = 0.55), EPA
(p = 0.69), or ARA (0.20), but there were differences by date,
with more DHA at the end and less EPA and ARA (p < 0.001 for
all; Fig. 5). There was no effect of MP concentration (p = 0.56)
or date (p = 0.49) on absolute concentrations of ARA. There
was no effect of MP concentration on absolute concentrations
of EPA (p = 0.54) but there was a predicted reduction in EPA
from 7.17 to 5.74 mg g−1 at the day 68 relative to day 34
(p = 0.02). There was no effect of MP concentration on DHA
(p = 0.57) but there was a predicted increase in DHA of 2.67–
6.41 mg g−1 from the days 34 to 68 (p < 0.001).

Discussion
We did not find that environmentally relevant concen-

trations of MP altered yellow perch diet or the fatty acid
composition of yellow perch dorsal muscle or of zooplank-
ton communities during our 10-week mesocosm experiment.
Absolute concentrations of HUFAs were also unaltered in
either biological matrix, besides yellow perch muscle DHA
increasing slightly with MP exposure. We interpret this single
response only as preliminary evidence with unclear implica-
tions. Similar total fatty acid content in yellow perch muscle
across MP treatments suggests that toxicological effects,
including food dilution, were minimal. Differences in final
yellow perch body weight were primarily explained by a neg-
ative correlation with the number of surviving individuals
in each mesocosm, probably due to reduced competition in
high mortality mesocosms (i.e., density-dependence). These
results do not support any effects of MPs on aquatic food web
structure at even high levels of MP exposure. Concentrations
of MPs in the yellow perch digestive tracts correlated with
nominal exposure concentrations and, in the 29 240 particles
L−1 treatment, were as great as 607 particles individual−1

(Rochman et al. 2024), despite an average water column
concentration of 246 particles L−1 and only 0.06 particles
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Fig. 4. Results of canonical correspondence analysis (CCA) for the zooplankton compositional fatty acids data with predictors
time point (days -6, 34, and 68), nominal microplastic (MP) concentration, and cladoceran, cyclopoid, and calanoid biomass.
For zooplankton biomass, samples from day 1 were used to relate to day -6 fatty acids. Plot A shows individual sample scores
(the weighted averages of fatty acid scores), with shape and grey hulls separating sampling points, color indicating treat-
ment/mesocosm, with time point centroids in blue and arrows indicating vectors for zooplankton biomass. Plot B shows fatty
acids scores in blue as the weighted averages of sample scores, and mesocosm and sampling point centroids in purple. In plot
A, a sample located closer to a time point centroid is more likely to be from that time point. In plot B, a fatty acid score found
closer to a time point centroid is likely to be positively associated with that time point.

individual−1 for zooplankton. This level of contamination
in the yellow perch is similar to the highest concentrations
reported in fish digestive tracts collected from the environ-
ment (Munno et al. 2021) and suggests the yellow perch were
feeding to a large extent from the benthos, where MP concen-
trations would have been highest. However, variable yellow
perch survival and body weight in the controls, and high
variation among mesocosms may have precluded MP effect
detection. Our supplemental feeding of the yellow perch with
a high-quality source of fatty acids may have further obscured
any nutritional effects which might have propagated through
the food web if the fatty acid composition of biofilm or phy-
toplankton communities (which we did not measure) were
affected.

The lack of a response to MP exposure in yellow perch or
zooplankton fatty acids is in line with other results from

this experiment. Phytoplankton and zooplankton commu-
nity composition and biomass was not affected by MP treat-
ment, with one exception being a positive relationship be-
tween MP concentration and zooplankton abundance on
day 33 (Langenfeld 2023) and otherwise reflected changes
through time rather than a concentration response. See the
supplementary materials (S3) for additional discussion relat-
ing to the zooplankton and phytoplankton communities.

Our perch data are in line with other findings that MP
exposure does not cause consistent directional responses in
body length, mass, or condition in fish, although most exper-
iments have been conducted in laboratory settings (Hossain
and Olden 2022). It is possible that 10 weeks was insufficient
time to witness significant impacts of MP on growth, as might
be predicted by food dilution, although the yellow perch were
small enough that they were probably dedicating the major-
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Fig. 5. Relative concentrations of arachidonic acid (ARA),
eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA)
in the zooplankton samples across mesocosms, according
to nominal microplastic (MP) exposure concentration (x-axis,
log-scale) at days 34 and 68.

ity of their consumed energy to somatic growth (Rennie and
Venturelli 2015). Lu et al. (2022) exposed yellow perch in a
laboratory study over 9 weeks to HDPE at 0%, 1%, 2%, 4%, and
8% of diet by weight and found that while exposure did not
affect survival or growth, fish fed the highest amount of high
density polyethylene (HDPE) had lower protein and ash con-
tent, increased liver weight and decreased liver lipid concen-
trations. All exposure levels caused changes in the communi-
ties of intestinal microbiota. It is difficult to directly compare
exposure in our studies, as Lu et al. did not analyze any fish
for gut contents immediately following exposure, but 8% of
diet by mass, where they saw most results, is quite high and
likely at or beyond the level of exposure in our highest con-
centration treatment.

There are limited studies on the effects of MPs on fish fatty
acid composition in different tissues, although a variety of
responses have been demonstrated for other contaminants.
These findings include decreases in PUFA and increases in
SFA in fish exposed to organic and inorganic pollutants, al-
though EPA and DHA have also been found to increase with
tissue levels of persistent organic pollutants (Geng et al. 2015;
Filimonova et al. 2016). Our results do not suggest a strong ef-
fect of MPs or their additives on yellow perch or zooplankton
as fatty acid sources in food webs. However, we only consid-
ered the yellow perch fatty acid composition in muscle tis-
sue, while liver tissue might have been more representative
of shorter term changes in dietary fatty acids (Mohan et al.
2016). Our results also do not suggest the presence of food di-
lution, although it is possible that food dilution effects would
have emerged if food was more limiting (Piccardo et al. 2020;
Lyu et al. 2022).

The increase of yellow perch dorsal muscle DHA with MP
exposure warrants future exploration. We propose several ex-

planations but emphasize that they are speculative. As the
effect size was low, it remains possible that this was a sta-
tistical artifact. If a true effect, it is possible that the yellow
perch either increased their retention of DHA in their dorsal
muscle tissue, upregulated conversion to DHA from EPA, or
had greater access to DHA in their diet. Hanachi et al. (2021)
found that rainbow trout (Oncorhynchus mykiss) exposed to PS
and chlorpyrifos displayed an increase of DHA in muscle tis-
sue and suggested that this represented an oxidative stress
response (Hanachi et al. 2021). One of the consistently wit-
nessed effects of MP exposure on fish is an increase in oxida-
tive stress (Kim et al. 2021), and there is evidence DHA can act
as an antioxidant (Liu et al. 2014; Rabeh et al. 2021), so it is
feasible that yellow perch upregulated retention or synthesis
of DHA. Calanoid copepod abundance also did trend higher
with MP concentration through the experiment (Langenfeld
2023), and these copepods are higher in DHA than cladocer-
ans or smaller copepods (Persson and Vrede 2006; Hiltunen
et al. 2015). Although we did not detect individuals of this
group in our limited diet study, fatty acids integrate diet over
time, so the yellow perch could have eaten more calanoid
copepods in the higher MP treatments earlier in the experi-
ment. Biofouled MPs may have also facilitated increased con-
sumption of algae high in fatty acids, including DHA, in-
creasing yellow perch dorsal muscle DHA in the higher treat-
ment yellow perch, as well as contributing to their ability to
maintain fatty acid composition in their tissues where food
dilution might otherwise be occurring. There is some evi-
dence of this effect for Daphnia (Canniff and Hoang 2018;
Amariei et al. 2022), but it has not yet been explored for
fish.

This work suggests that fish and zooplankton communities
can tolerate MP concentrations well beyond those currently
found in the environment. However, there are some impor-
tant considerations and limitations to our findings. Measured
water concentrations of MPs in the highest treatment meso-
cosm were two orders of magnitude lower than nominal con-
centrations. Based on size of the yellow perch (Graeb et al.
2006), prey taxa detected in their stomach, including chirono-
mids, as well as the presence of PET particles, it is highly
likely that they were feeding along the walls and bottoms
of the mesocosms and targeting benthic invertebrates. This
would have exposed them to higher concentrations of MPs
than what was in the water column. We did not measure fatty
acid composition in the epifaunal communities living on the
walls and bottom of the mesocosms, so it is unclear how
these communities responded to MP exposure. However, in
the highest treatment, MP concentrations (mostly PE) in the
wall-attached biofilm increased over time and reached con-
centrations of 282 907 particles m−2 at 0.2 m and 1205 310
particles m−2 at 1.2 m depth by week 9 of the experiment
(Rochman et al. 2024), supporting the idea of high MP expo-
sure for the yellow perch feeding on the walls and bottom.
Pelagic zooplankton would have experienced lower exposure
amounts than yellow perch, which could explain a lack of ef-
fects on their communities and low ingested MP levels. Our
results for many variables, including fatty acids and yellow
perch body weight, were also highly variable and results from
the two control mesocosms included the lowest and highest
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values. We suspect density-dependent growth occured in the
mesocosms, driven by early experimental differences in yel-
low perch mortality due to handling stress, which may have
masked any MP exposure response.
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