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Abstract
Prey composition and availability is considered a primary predictor of lake trout (Salvelinus namaycush) mercury (Hg) concen-

trations. Evidence from other freshwater fishes suggests that environmental and landscape factors likely also contribute to
fish Hg dynamics, yet comprehensive, contemporary assessments for lake trout from boreal and north-temperate lakes are
lacking. Here, we reassess the importance of prey characteristics using both previously published and contemporary data,
incorporating additional variables and model complexity to better understand factors influencing Hg dynamics of Ontario
lake trout. Our analyses indicate that (1) lake trout Hg concentrations are primarily associated with individual body size, (2)
high dissolved organic carbon (DOC) concentrations elevate Hg for fish of a given size, and (3) a coarse categorization of food
chain length, specifically the presence of Mysis diluviana, informs Hg biomagnification slopes. The inclusion of DOC was vital
for assessing human consumption risk, as lake trout in high DOC lakes were more likely to exceed Hg guidelines at sizes often
harvested by anglers. Drivers of lake trout Hg levels in boreal and north-temperate lakes closely match those reported to affect
other fishes in the region, regardless of feeding, thermal, and habitat strategies.

Key words: biomagnification, bioaccumulation, food web, dissolved organic matter, trophic efficiency, predator–prey interac-
tions

Introduction
Human mercury (Hg) exposure is normally determined by

diet, primarily through the consumption of fish. Even at low
but persistent Hg exposure levels, Hg can negatively affect
nearly every organ within the human body. Hg toxicity has
been linked to a wide variety of neural impairments and syn-
dromes in children and adults, including decreased motor
system function, neurological impairment, compromised im-
munity, and reproductive health issues (Zahir et al. 2005; Kim
et al. 2016). As such, understanding what controls fish Hg dy-
namics and being able to easily predict under what scenarios
contaminated fish may be present is essential in the develop-
ment of effective public health policy and advice. An impor-
tant aspect of this policy is risk management through con-
sumption advisories for wild fish——published both regionally
and nationally——to safeguard against the over-consumption
of contaminated fish, while recognizing the critical impor-
tance of wild-caught fish to food security and nutritional, cul-
tural, and community well-being, particularly for Indigenous
communities. One such consumption guideline is Health
Canada’s safe guideline limit of 0.5 parts per million or
μgHg/gfish wet weight for most commercial fish (Canadian
Food Inspection Agency 1998). Risk management through

such guidelines depends on reliable knowledge of fish Hg
levels. Since inter- and intraspecific variation in fish Hg con-
centrations is high, it is important to continually re-assess
and test the circumstances that may result in unacceptable
or sub-optimal risk-benefit trade-offs for consuming fish.

Hg emissions increased markedly in the 20th century with
coal-fired power production globally diffusing inorganic Hg
through long-range atmospheric transport and deposition.
In the aquatic environment, inorganic Hg readily transforms
into its toxic form, methylmercury (MeHg), which can accu-
mulate and biomagnify through food webs (see Lavoie et al.
2013). Despite Hg emission reductions, persistently high yet
variable MeHg concentrations remain in watersheds and the
biota found within them, even in seemingly remote areas be-
cause of long-range atmospheric deposition, extended water
residence times, and ecosystem-mediated Hg cycling (Tang
et al. 2013; Branfireun et al. 2020; Pilote et al. 2024). Along
with Hg poisoning in humans, high Hg concentrations in fish
can alter individual behaviour, change spawning time, and
reduce reproductive success (Hammerschmidt et al. 2002;
Berntssen et al. 2003).

Prey contamination was originally considered the primary
route for accumulation of Hg and other contaminants of
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concern in fish (Thomann 1981). It was under this premise
that seminal research on lake trout (Salvelinus namaycush) con-
taminant dynamics in Ontario lakes were investigated, ini-
tially from work by Rasmussen et al. (1990) predicting lake
trout polychlorinated biphenyl (PCB) concentrations across
lakes varying in food chain length, followed shortly there-
after by Cabana et al. (1994) predicting lake trout Hg con-
centrations on the same basis. In both of these works, lakes
were categorically assigned to one of three Lake Classes based
on pelagic food chain length; Class 1 lakes, which had no
pelagic prey other than zooplankton; Class 2 lakes, which
had pelagic prey fishes like Coregonids present, and Class
3 lakes, which had Mysis diluviana (Mysis hereafter) as well
as pelagic prey fishes present. With each increase in Lake
Class (i.e., pelagic food chain length), lake trout contaminants
(PCBs and Hg) increased 1–4 fold from one Lake Class to the
next (Rasmussen et al. 1990; Cabana et al. 1994). While land-
scape and body size predictors were included within a subset
of these analyses, the main result communicated to readers
of these two studies was the categorical increase of contam-
inants with increasing Lake Class. Further work using nitro-
gen stable isotopes supported findings of contaminant bio-
magnification with increasing food web complexity and es-
tablished a quantitative link between lake trout trophic po-
sition and Hg (Vander Zanden and Rasmussen 1996; Garcia
and Carignan 2005; Swanson and Kidd 2010; Johnston et al.
2022). Meta-analyses and reviews published since have also
highlighted the central role of food chains as a determinant
of Hg concentrations in predatory fishes (Kidd et al. 2012;
Lavoie et al. 2013).

Other research highlights demographic, morphometric,
and metabolic processes as modifiers of fish contaminants,
particularly in relation to Hg (Gewurtz et al. 2011a, 2011b;
Chen et al. 2018; Lescord et al. 2018b; Thomas et al. 2020). Age
and/or body size specifically serve as key demographic and
morphometric predictors of fish Hg burden (Somers and Jack-
son 1993; Stafford and Haines 2001; Power et al. 2002; Trudel
and Rasmussen 2006; Johnston et al. 2022). As fish approach
asymptotic size, they tend to eat larger and more contam-
inated prey items, which in combination with longer lifes-
pans leads to high accumulation of slow-to-eliminate con-
taminants like Hg. Additionally, larger fish display higher
metabolic costs (and hence, poor growth efficiency) com-
pared with relatively younger, smaller, and faster growing
individuals (Trudel and Rasmussen 2006; Jenssen et al. 2010;
Johnston et al. 2022).

Landscape-level abiotic factors, such as watershed and lake
physicochemical properties, can also modify fish Hg concen-
trations (Finley et al. 2016; Lescord et al. 2018a, 2019; Sumner
et al. 2020; Thomas et al. 2020; Moslemi-Aqdam et al. 2023).
High dissolved organic carbon (DOC) concentrations typically
correspond with higher fish Hg concentrations (Lavoie et al.
2019) due to Hg’s ability to complex with DOC, and lakes with
high DOC typically also having higher bacterial methylation
potential associated with an increased presence of wetlands
and anoxic conditions (Ravichandran 2004). However, at DOC
concentrations greater than ∼8–10 mg/L there is also some
evidence that MeHg transfer efficiency (i.e., biomagnification)
can decrease with changes in the composition of organic mat-

ter associated with high levels of DOC (Tsui and Finlay 2011;
French et al. 2014; Braaten et al. 2018). Lake pH, surface area,
primary productivity (often assessed as total phosphorus or
chlorophyll-a concentrations), forestry operations, forest fire
activity, and latitude have all additionally been shown to af-
fect Hg under specific scenarios (Table 1). Given the numer-
ous factors influencing fish Hg concentrations, incorporating
landscape, climate, and physicochemical variables has been
useful when describing Hg dynamics in certain freshwater
fishes——such as walleye Sander vitreus, northern pike Esox lu-
cius, and white sucker Catostomus commersonii (Finley et al.
2016; Chen et al. 2018; Lescord et al. 2019; Sumner et al. 2020;
Thomas et al. 2020).

This perspective paper aims to provide a contemporary re-
examination of the factors driving Hg accumulation in lake
trout, a top predator in tens of thousands of North American
lakes, and a common food fish across their range. The current
effort starts with a re-assessment of seminal work by Cabana
et al. (1994) that demonstrated a role of food chain length
in shaping consumer Hg dynamics (via the lake trout food
chain length Lake Class system), followed by models that pro-
vide successively more explicit considerations of other con-
tributing drivers of contaminant accumulation. While the
lake trout Lake Class system provides an important starting
point for characterizing broadscale contaminant risks that af-
fect fish and those who consume them, much more has been
learned since these original papers were published in terms
of what variables modify Hg concentrations of freshwater
fishes (e.g., Lescord et al. 2019; Thomas et al. 2020; Johnston
et al. 2022), and new statistical tools and improved computa-
tional power now allow for more complex analyses of land-
scape determinants on contaminant dynamics (e.g., Thomas
et al. 2020; Harrow-Lyle et al. 2023; Lepak et al. 2023). Despite
these insights from other species and advances in analytical
power, there remains a need for a more comprehensive evalu-
ation of what variables are useful in predicting lake trout Hg
concentrations and variability across the landscape, within
the context of previous research highlighting the importance
of food chain length (i.e., Rasmussen et al. 1990 and Cabana
et al. 1994).

For lake trout populations in Ontario’s boreal and north-
temperate lakes, we demonstrate that both body size
and physicochemical landscape variables——particularly DOC
concentrations——play key roles in determining Hg concen-
trations. Linear mixed-effect modeling indicated that while
body size is the strongest predictor of lake trout Hg con-
centrations, lake DOC concentrations dictate whether a lake
trout of a given size is likely to exceed Hg contaminant con-
sumption guidelines. Notably, even relatively small-bodied
lake trout from high-DOC lakes are likely to have Hg concen-
trations above these thresholds. Our updated lake trout Hg
contamination model also reinforces the value of incorporat-
ing simple, categorical designations of food chain length (i.e.,
Lake Class) to describe Hg bioaccumulation slopes. Specifi-
cally, our revised Lake Class categories revealed that the pres-
ence of Mysis was associated with shallower lake trout Hg ac-
cumulation slopes regardless of whether pelagic prey fishes
are present or absent, likely due to higher growth rates and
prey conversion efficiency in the presence of Mysis. Below, we
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Table 1. Predictions of lake trout Hg dynamics in the presence of independent landscape and physicochemical variables.

Variable type Proposed lake trout effect mechanism Assessment variable Lakescape characteristic Predicted lake trout [Hg] References

Trophic
complexity

Extension of food chain length (FCL) promotes consumer Hg
biomagnification

FCL High FCL + 1–3

δN isotopes High δN

Body size Larger, older fish eat larger and more contaminated prey, have longer
lifespans that facilitate higher Hg accumulation, and have higher
metabolic costs relative to younger/smaller individuals

Length Larger body size + 4–9

Weight Older age

Age

Dissolved organic
matter (DOM)

Lake trout Hg exposure will be influenced by watershed processes
governing Hg availability

Dissolved organic carbon
(DOC)

High DOC + or − 10–17

Hg can readily complex with DOM, and methylation potential increases
concomittantly with [DOM] and wetland presence, though;

Watershed characteristics High % connected
wetland/lake area

Some studies suggest high DOC actually reduces methylation,
particularily in acidic environments (ref. 12,13), thereby altering Hg
availability to fish (ref. 14)

Water clarity High secchi

Productivity Relative [Hg]’s of all food web compartments concentrate/dilute based on
available biomass

Total phosphorus (TP) High TP – 20–22

Lake trout activity should scale with ecosystem productivity, affecting
growth efficiency and Hg “dilution”

Chl-a High Chl-a

Acidity Low pH can limit ecosystem productivity, thereby concentrating Hg in
remaining biomass

pH Low pH + 13–15, 18,19

High concentrations of H+ ions compete with DOC for Hg complexation

Lake pH helps explain [Hg] in other fish species

Lake size Waterbody size affects limnetic oxythermal conditions, where warmer
and shallower lakes have higher methylation potential

Surface area Small lake + 23–24

Maximum depth Shallow lake

Watershed
disturbance

Hg is associated with organic matter in topsoils. Active forestry
operations increase soil disturbance leading to export and siltation of
receiving waterbodies (streams, rivers, lakes)

Forestry Active forestry; clear
cutting

+ 25–28

Increased Hg to receiving waterbodies because of increased catchment
runoff and associated impacts with siltation (e.g., DOC loads)

Fire Forest Fires + 29–31

Particulate Hg is released during forest combustion and can be
redoposited on landscapes, and subsequently methylated

Latitude More northerly lakes should stay relatively cooler than southern lakes,
reducing methylation potential, though;

Latitude Northern range edge + or − 32

In northern lakes, fish growth rates should also be slower, excretion will
be reduced making Hg growth dilution less likely

Sex Increased Hg associated with eggs in F lake trout or differences in growth
efficiency between M and F

Sex M or F + or − 33–35

Potential intersexual differences in Hg elimination rates

Note: Mechanisms are described by the common assessment variable for a given attribute, and predictions are made based on whether the variable is likely to cause on increase (+) or decrease (−) in lake
trout Hg concentrations.
References: (1) Rasmussen et al. (1990); (2) Cabana et al. (1994); (3) Vander Zanden and Rasmussen (1996); (4) Somers and Jackson (1993); (5) Stafford and Haines (2001); (6) Power et al. (2002); (7) Trudel and
Rasmussen (2006); (8) Jenssen et al. (2010); (9) Johnston et al. (2022); (10) Lavoie et al. (2019); (11) Ravichandran (2004); (12) Miskimmin et al. (1992); (13) Kidd et al. (2012); (14) Dittman and Driscoll (2009);
(15) Wiener et al. (2006); (16) McMurtry et al. (1989); (17) French et al. (2014); (18) Cope et al. (1990); (19) Qian et al. (2001); (20) Kidd et al. (1999); (21) Kidd et al. (2012); (22) Trudel and Rasmussen (2006); (23)
Bodaly et al. (1993); (24) Danco (2013); (25) Garcia and Carignan (2005); (26) Huang et al. (2023); (27) Lam et al. (2024); (28) Porvari et al. (2003); (29) Garcia et al. (2007); (30) Moreno et al. (2016); (31) Witt et al.
(2009); (32) Lavoie et al. (2013); (33) Madenjian et al. (2011); (34) Madenjian et al. (2014); (35) Madenjian et al. (2016).
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Fig. 1. Comparison of mean geometric (a, b) and arithmetic (c, d) Hg concentrations between different Lake Classes from the
Cabana (a, c) and contemporary (b, d) datasets. Common letters between Lake Classes within a given panel represent Lake
Classes where mean Hg concentrations are statistically equivalent from a Tukey HSD test. Error bars represent 95% confidence
intervals. Lake Classes describe lake trout pelagic prey communities, where Class 1 only have pelagic zooplankton, Class 1.5
contain Mysis but no pelagic prey fishes, Class 2 have pelagic prey fishes but no Mysis, and Class 3 contain both Mysis and pelagic
prey fishes.

detail the progression of our models, from those parameter-
ized solely with food chain length information to our final
machine-learning informed mixed-effect model.

Revisiting the use of food web lake
classes to estimate lake trout mercury
contamination——the case for including a
body size metric

Biomagnification describes the process by which higher
trophic levels and top consumers accumulate more Hg than
primary producers and lower trophic consumers, with bio-
magnification generally increasing as food chain length in-
creases (Phillips et al. 1980). Under this theory, Cabana et al.

(1994) assessed lake trout Hg dynamics across a prey com-
munity gradient of increasing pelagic food chain length to
test whether distinct Lake Classes could predict lake trout Hg
levels. Ninety-six boreal and north-temperate Ontario lakes
were separated into three Lake Classes based on the pres-
ence of pelagic prey items, and mean Hg concentrations of
lakes among Lake Classes were compared using fish collected
between 1975 and 1984 (Table S.1; Class 1, no pelagic prey
other than zooplankton; Class 2, pelagic prey fishes present;
Class 3, Mysis and pelagic prey fishes present; see Cabana et
al. (1994) for full methodology). As predicted, mean Class 1
lake trout Hg concentrations were lower than those in Class
2 and Class 3 lakes, and there was some visual evidence that
Class 3 lake trout Hg concentrations were higher than those
from Class 2 lakes (Figs. 1a and 1c). However, re-analysis of

C
an

. J
. F

is
h.

 A
qu

at
. S

ci
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

L
ak

eh
ea

d 
U

ni
ve

rs
ity

 o
n 

06
/1

8/
25

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 

http://dx.doi.org/10.1139/cjfas-2024-0197


Canadian Science Publishing

Can. J. Fish. Aquat. Sci. 82: 1–18 (2025) | dx.doi.org/10.1139/cjfas-2024-0197 5

Fig. 2. Survey lakes across the Province of Ontario, Canada from (a) Cabana et al. (1994), and (b) those compiled for this study.

the Cabana data using one-way ANOVA to confirm their main
communicated result of increasing Hg with increasing Lake
Classes revealed that pairwise differences between all Lake
Classes were not detected despite overall model significance
(F[2,93] = 21.56, p < 0.0001; R2 = 0.32). Though Tukey HSD tests
identified Class 1 lakes as having significantly lower mean Hg
concentrations than either Class 2 or Class 3 lakes, there was
no difference between lakes that had pelagic prey fish com-
pared to those with pelagic prey fish and Mysis (Class 1–2, p =
< 0.00001; Class 1–3, p = < 0.00001; Class 2–3, p = 0.29).

To compare this result with an independent and contem-
porary dataset (SI.1——Dataset Descriptions), another set of 64
lakes covering a similar geographic range but with samples
collected between 1991 and 2022 was assembled (Fig. 2, Table
S.2). A new Lake Class, Class 1.5, was also introduced, describ-
ing lakes where Mysis were available to lake trout but pelagic
prey fishes were absent. Mysis-only lakes appear to be an omis-
sion in previous Lake Class studies, given their importance in
the original Lake Class definitions (i.e., as the key component
separating Class 2 and 3 lakes). According to prevailing food
web theory, we anticipated Class 1.5 lake trout Hg concentra-
tions to be intermediate between those of Class 1 and Class
2 lakes. Similar to Cabana et al. (1994), we found a signifi-
cant effect of Lake Class on mean lake trout Hg concentra-
tions with the contemporary data set (ANOVA, F[3,59] = 5.12,
p = 0.003, R2 = 0.21), though significant pairwise differences
in mean Hg concentrations were only detected between Class
1 and Class 3 lakes (Figs. 1b and 1d).

As such, neither the data from Cabana et al. (1994) nor our
contemporary dataset support categorical food chain length
alone as a primary determinant of lake trout Hg. The theory
put forward by Cabana et al. (1994) assumes stepwise lake
trout Hg increases with the inclusion of each new pelagic
prey item in the food web from Class 1 to Class 3, indepen-
dent of body size, which was not observed. Yet, other lake
trout Hg models, including an analysis reported in Cabana
et al. (1994), have demonstrated body size as an important

modifier of lake trout Hg concentrations (Somers and Jack-
son 1993; Futter 1994; Stafford et al. 2014). Indeed, applying
one-way ANOVAs to mean body weight as a response vari-
able in place of mean Hg concentrations reveal nearly iden-
tical results as those of lake trout Hg for both datasets (Mean
body weight ∼ Lake Class ANOVA, Cabana data: F[2,93] = 12.46,
p < 0.0001, R2 = 0.21; contemporary data: F[3,59] = 9.46,
p < 0.0001, R2 = 0.27; SI Fig. S1). Similar statistical out-
comes between mean Hg and mean body weight response
variables across Lake Classes indicate that any significant re-
sult of Hg concentrations between Lake Classes may be mis-
interpreted, simply reflecting the role of body size as the
main driver of lake trout Hg concentrations. Lake trout typi-
cally reach larger sizes when they have access to bigger prey,
such as in Class 3 lakes (Shuter et al. 2005, 2016), and since
there is a general positive relationships between body size
and Hg concentrations in fish, lake trout in these lakes are
more likely to have elevated Hg levels due to their larger
size.

To address the potential dependency of body size on lake
trout Hg concentrations across Lake Classes, we reanalyzed
both the historic Cabana et al. dataset and our indepen-
dent dataset using an Analysis of covariance (ANCOVA). After
confirming ANCOVA assumptions (residual normality, vari-
ance homoscedasticity, absence of interaction between co-
variate and categorical predictor), a reanalysis of Cabana’s
data confirmed that mean body weight was a significantly
more important predictor of mean lake trout Hg concentra-
tions compared to Lake Class (log body weight F[1,92] = 94.97,
partial variance explained = 46.5%, p < 0.0001; Lake Class
F[2,92] = 8.04, partial variance explained = 8.0%, p = 0.0006;
Fig. 3a). To test if the significant improvement of model fit
from including body size could be replicated, we applied AN-
COVA to our contemporary dataset of mean fish weights. In
initial model assessments, one Class 2 lake——Kimball Lake——
was removed from the dataset because of extreme values
in a residuals versus leverage diagnostic plot. Further, a
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Fig. 3. Predictions of lake trout Hg concentrations across different Lake Classes when body size is included as a model covariate:
(a) a reassessment of Cabana et al. (1994) data using ANCOVA where mean body weight was used as a covariate with discrete
Lake Classes as treatment groups; (b) an attempt at using ANCOVA for the contemporary dataset with mean body weight as a
covariate, (c) individual body weight as a covariate in a linear mixed-effect model, and (d) individual body length as a model
covariate in a linear mixed-effect model. For all panels, solid lines represent predictions from model coefficients, and the
dotted red line indicates the Canadian Hg consumptions guideline (0.5 ppm Hg). Note, log axes on all y-axes and x-axes in
panels a–c.

significant interaction was identified when testing for an
interaction between the covariate and categorical predic-
tor, precluding the ability to examine the effect of Lake
Class across the gradient of body weight (a significant in-
teraction was also present when the aforementioned out-
lier was included). Assessing the model with an interac-
tion term, body weight was again the main driver of lake
trout Hg concentrations, though variation in Lake Class
slopes revealed unexpected Hg dynamics, including a neg-
ative relationship between Hg and mean body weight of
Class 1.5 fish (Fig. 3b and Table 2). Different statistical con-
clusions between the two datasets based on the interac-
tion (or lack thereof) between Lake Class and body size,
as well as potential shortcomings associated with reducing
body weight and Hg observations to lake-wide population

means as in the Cabana et al. (1994) assessment indicate
that the approaches taken to date may be inadequate for
best describing either intra- or inter-lake variation in lake
trout Hg.

The influence of body size on lake trout
Hg dynamics——moving from populations
to individuals

To investigate if allometric relationships between individ-
ual body size and Hg concentrations within Lake Classes
provide better support than population-level means for the
hypothesis that Lake Classes structure lake trout Hg, lin-
ear mixed-effect models were applied to the contemporary
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Table 2. Model coefficients and summaries for the various statistical approaches for predicting lake trout Hg from the contemporary dataset (i.e., no summaries
provided for Cabana et al. (1994) models).

Model coefficients Model summary

Model test Data type Model syntax Lake class Intercept Mean weight Fish length × Lake class DOC Variable df F p value R2

ANOVA† Mean
(geometric)

log(Hg) ∼ Lake
class

1 − 1.53 / / / Lake class 3,59 5.12 0.0030 0.21

1.5 − 1.27 / / /

2 − 0.95 / / /

3 − 0.80 / / /

ANCOVA† Mean
(geometric)

log(Hg) ∼ log(mean
weight)∗lake class

1 − 6.37 / 0.73 / log(mean
weight)

1,54 54.70 < 0.0001 0.58

1.5 − 0.18 / −0.89 / Lake class 3,54 1.17 0.33

2 − 12.37 / 0.86 / log(mean
weight) ×
lake class

3,54 5.92 0.0014

3 − 5.06 / −0.15 /

Linear
mixed-effect
model

Individual log(Hg) ∼ log(body
weight) + lake

class + (log(body
weight) | Lake ID)

1 − 4.82 0.53 / / log(fish
weight)

1, 44.4 470.73 < 0.0001 0.44

1.5 − 2.66 / / / Lake class 3, 61.6 0.86 0.46

2 − 2.44 / / /

3 − 2.55 / / /

Linear
mixed-effect
model

Individual log(Hg) ∼ fish
length ∗ lake class

+ (fish length|
Lake ID)

1 − 3.52 / 0.0049 / Fish length 1, 53.2 435.85 < 0.0001 0.49

1.5 − 2.71 / 0.0024 / Lake class 3, 52.4 0.08 0.97

2 − 3.08 / 0.0032 / Fish length ×
lake class

3, 51.9 5.04 0.0015

3 − 2.56 / 0.0021 /

Linear
mixed-effect
model

Individual log(Hg) ∼ fish
length ∗ lake

class + DOC + (fish
length| Lake ID)

1 − 4.25 / 0.0051 0.13 Fish length 1,67.19 493.50 < 0.0001 0.59

1.5 − 3.41 / 0.0036 / Lake class 3, 65.64 3.73 0.015

2 − 3.74 / 0.0045 / DOC 1,73.5 35.52 < 0.0001

3 − 3.37 / 0.0033 / Fish length ×
lake class

3,65.59 6.00 0.0011

Note: Only model coefficients necessary for estimating Hg concentrations for a given model are presented.
Examples for how to estimate [Hg] for specific Lakes Classes from the following statistical analyses: ANOVA, Class 1: Hg = exp(−1.53), ANCOVA, Class 2: Hg = exp(−6.37 + 0.73∗log(Mean Weight), LMM, Lake Class ∗ Ind.
Length, Class 1.5: Hg = exp(−2.71 + 0.0024∗Ind. Length), LMM, Lake Class ∗ Ind. Length + DOC, Class 3: Hg = exp(−3.37 + 0.0033∗Ind. Length + 0.13∗DOC). DOC, dissolved organic carbon.
†These models should NOT be used for predicting lake trout Hg concentrations. Lake-wide Hg and body size averages disregard important individual-level variation.
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dataset, allowing for potential random variance in the re-
lationship between fish body size and Hg among lakes to
be accounted for when considering the overall relationship
within and among Lake Classes (individual observations of
fish size were not reported in the Cabana et al. (1994) publi-
cation, and could not be analyzed similarly). Comparisons of
fish Hg with different metrics of body size (i.e., body weight
and body length) can also be made. Only body weight was re-
ported for the Cabana et al. data, though body length has gen-
erally been the typical covariate being used in studies of fish
Hg wishing to control for fish size (e.g., Somers and Jackson
1993; Johnston et al. 2022), and is the metric most commonly
reported in contaminant consumption guidelines (Canadian
Food Inspection Agency 1998).

Mixed-effect model structure was determined using like-
lihood ratio tests, first optimizing for the inclusion of ran-
dom effects (as either random slopes or intercepts) and then
fixed effects. The initial full model prior to any optimiza-
tion included the interaction between body size (weight or
length) and Lake Class, along with random slopes and inter-
cepts of lake trout Hg with the covariate (body size) for unique
lakes within Lake Classes. After finalizing model structure,
model assumptions were verified using histograms of resid-
uals, plots of residual versus fitted values, Q–Q plots, and by
testing for a non-significant correlation between model resid-
ual and fitted values. A Type III Satterthwaitte ANOVA was
used to assess significance of fixed effects, and marginal R2

values of the fixed effects were used to describe model fit
from the MuMIn R package (Bartoń 2025). Restricted max-
imum likelihood was used for assessing the final model,
though traditional maximum likelihood methods were used
for optimizing fixed effects during model selection. All linear
mixed effect models were conducted using lme4 and lmertest
R packages and R version 4.1.2 (Kuznetsova et al. 2017; Bates
2018).

With individual body weight included as a covariate, the
predicted increases in lake trout Hg associated with higher
Lake Classes were not observed. Model parsimony was found
with the independent effect of Lake Class and individual body
weight, and incorporating lake as a random slope with body
weight (eq. 1):

log [Hg] ∼logbodyWeight + lakeClass

+(logbodyWeight|lakeID)

(1)

Similar to previous ANCOVA approaches that used popu-
lation means, the presence of individual body weight over-
whelmed the effect of Lake Class on Hg concentrations (Table
2; Fig. 3c). Allometric scaling between individual body weight
and Hg revealed no differences between Lake Classes, demon-
strating a clear log-linear relationship between individual
body mass and Hg concentrations.

When body length was used as a covariate (as opposed to
body weight), a possible role for Lake Classes became appar-
ent (Fig. 3d). Following model selection, the best model in-
cluded the interaction term between Lake Class and body
length, along with lake modelled as a random slope with

body length:

log [Hg] ∼bodyLength ∗ lakeClass + (bodyLength|lakeID)(2)

Based on fitted relationships across Lake Classes, Hg con-
centrations of an average sized lake trout (∼500 mm, where
relationships describing the Hg-body length relationship for
each Lake Class intersect) should be similar amongst indi-
viduals from different Lake Classes (Fig. 3d). However, the
significant interaction between Lake Class and body length
(F[3,73] = 5.57, p = 0.0017) revealed ontogenetic differences in
Hg contamination, where small and large individuals occu-
pying different Lake Classes exhibited distinct Hg dynamics
(Fig. 3d). Specifically, Class 1 and 2 lakes had steeper Hg slopes
than Class 1.5 and 3 lakes. Thus, at small sizes, Class 1 and 2
lake trout (where Mysis were absent) had lower Hg concen-
trations compared to Class 1.5 and 3 individuals (where Mysis
were present), whereas at larger sizes, lake trout in Class 1
and 2 lakes had higher Hg than Class 1.5 and 3 lakes at a
given length.

Despite using more sophisticated models, expected step-
wise increases in lake trout Hg concentrations with increas-
ing Lake Class were not observed, suggesting that strictly top-
down model structures considering only food chain length
with body size are insufficient. The Cabana model posits
that large adult Class 3 lake trout Hg concentrations should
be higher than those of individuals from any other Lake
Classes. However, at large body lengths, our linear mixed-
effects model estimates that Class 3 lake trout would actu-
ally have lower Hg concentrations than individuals of the
same size from any Class 1 or 2 lakes. Further, when con-
sidering strictly planktivorous lake trout populations (Class
1 and Class 1.5), Hg accumulation slopes were shallower in
lakes where Mysis were present, despite having a longer rela-
tive food web.

Mysis are a preferred prey for both juvenile lake trout as
well as other pelagic prey fishes (France and Steedman 1996).
As such, their presence may modulate Hg concentrations dif-
ferently for juvenile versus adult lake trout (Fig. 3d). Higher
juvenile lake trout Hg concentrations in lakes with Mysis
(Class 1.5 and 3) may in part be due to consuming a more con-
taminated prey base, as Mysis MeHg concentrations typically
are more than double that of both pelagic zooplankton and
Chaoborus spp. (Back et al. 2003; Chételat et al. 2013; Brown et
al. 2022). Conversely, Mysis appear to confer a metabolic ad-
vantage to lake trout at adult life stages. Mysis % lipid content
is generally much higher than that of zooplankton (Paterson
et al. 2022), and biomass size spectra theory and examina-
tions of predator–prey mass ratios both suggest there are
metabolic and energetic efficiencies gained when larger prey
are made available to predators (i.e., predator–prey ratios
are small; Giacomini et al. 2013; Shuter et al. 2016; Sprules
and Barth 2016). Further, Hg biomagnification intensifies at
low predator growth rates and high activity rates, conditions
that are expected when predator–prey mass ratios are large
(Trudel and Rasmussen 2006). Unfortunately, the data neces-
sary to fit robust growth models for lake trout populations
across different Lake Classes——particularly those with and
without Mysis——are unavailable for our study, preventing a
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direct quantification of the energetic and biomagnification
benefits associated with improved predator–prey mass ratios.
However, in a whole-lake acidification experiment where My-
sis and other lake trout prey were extirpated, lake trout body
condition declined significantly (Mills et al. 1987, 2000), and
has yet to recover despite lake chemical recovery and the re-
turn of all other pre-acidification prey species (Rennie, un-
published data).

While biotic mechanisms likely explain lake trout Hg
bioaccumulation through prey type and availability, they dis-
regard the potential controls to the supply of Hg to lakes
at the base of the food web (Table 1). Ultimately, broader
ecosystem-level processes influence the bottom-up availabil-
ity of Hg to aquatic ecosystems (Branfireun et al. 2020), and
given their importance for describing Hg concentrations in
other freshwater fishes (Lescord et al. 2019; Sumner et al.
2020; Thomas et al. 2020), must be considered when exam-
ining patterns of lake trout Hg concentrations among lakes
with varying food web complexity as described above.

What’s missing? A lakescape assessment
of lake trout Hg concentrations

We present two complimentary yet independent statistical
methods to understand how physicochemical and landscape
attributes contribute to reported relationships between body
size and food chain length with lake trout Hg concentrations.
Multivariate statistics have commonly been used to assess in-
terconnected relationships between multiple variables that
cannot be assessed using traditional univariate approaches
(James and McCulloch 1990). However, traditional multivari-
ate statistics (e.g., principal components analysis (PCA), re-
dundancy analysis, and correspondence analysis) only allow
predictions to be made at the population level. Alternatively,
recent advancements in machine learning have led to the
emergence of more computationally-demanding statistical
tools that can determine patterns and trends in complex,
individual-level data (Pichler and Hartig 2023). We therefore
selected PCA and random forest (RF) algorithms as alternative
but complementary methods for assessing biotic and abiotic
variables with the greatest influence on lake trout Hg con-
centrations. Concordant predictors from both methods can
then be used in further modelling efforts to estimate Hg con-
tamination risk across the lakescape (Feld et al. 2016). Using
these two methods are also useful for comparing multivariate
approaches that differ in how data are handled; PCA uses a
data-reductionist approach, where mean values are required
for each input variable (which precludes the use of individ-
ual body size as a metric, and as demonstrated above, pre-
dicting fish Hg using population mean body sizes can be mis-
leading). Conversely, RF can incorporate all individual body
size observations and can handle many predictor variables
(including those that are nonlinear) without the fear of over-
parameterizing the final model (Prasad et al. 2006).

Based on the fundamental differences between these two
approaches, data used for PCA and RF were handled slightly
differently. PCA was performed using a subset of available
physicochemical variables. PCA can describe relationships

between interacting and collinear variables, but also faces
many of the same assumptions and limitations of univari-
ate linear models (i.e., sufficient observation-to-predictor ra-
tios, requirements of data to be linear and normally dis-
tributed, handling of missing observations; James and Mc-
Culloch 1990; Feld et al. 2016). To avoid over-parameterizing
the PCA, only mean lake trout body length (mm), maximum
lake depth (m), lake surface area (ha), total dissolved phos-
phorus (TDP; μg/L), pH, dissolved organic carbon (DOC; mg/L)
and latitude were included as variables based on a priori as-
sumptions of their roles modifying lake trout Hg dynamics
(see Table 1). Water chemistry data were collected from long-
term sampling programs conducted by the Ontario Ministry
of Natural Resources and IISD-Experimental Lakes Area be-
tween May and June of a given year, and mean chemistry val-
ues were applied across multiple sample years (SI.1——Dataset
Descriptions; Table S.3). Four lakes (Big Salmon, Class 3; Ope-
ongo, Class 2; Sherborne, Class 1; Smoke, Class 2) had some
combination of variables that were not reported (DOC, TDP,
and pH). For each instance of a missing value, the dataset
mean for that variable was imputed (imputed DOC, TDP, and
pH n = 4; imputed values in Class 1 n = 1, Class 2 n = 2, and
Class 3 n = 1). Lake Class was not formerly included as a vari-
able within the PCA, but 95% confidence ellipses around lake
scores on the first two axes were plotted for each Lake Class
to indicate potential associations between PCA variables and
Lake Classes. All variables were Z-score standardized, and PCA
was performed using the vegan package in R (Oksanen et al.
2022).

By contrast, RF can overcome some of the limitations of
more traditional multivariate analyses like PCA. RF is a flexi-
ble machine learning algorithm that can use non-parametric
data, large amounts of predictors, and both categorical and
continuous predictor variables (Feld et al. 2016). Further, it
can effectively analyze observations with missing, nonlinear
or complex relationships (Breiman 2001; Tang and Ishwaran
2017). As such, the RF model was built using the same set of
lakes and water chemistry data used in PCA but with addi-
tional physicochemical, lake morphometric, and individual-
level lake trout variables (see Fig. 4 for additional variables
relative to those included for PCA). The RF model assessed
5000 different “tree” combinations, each with the possibility
of up to seven variables split at each node (via guidance from
package creators to set variable splits to the number of total
model variables divided by three). Variable importance, a rel-
ative measure of variable significance, was reported for each
variable within the model. Models were built in R using the
randomForestSRC and ggRandomForests packages, and model fit
was described with overall model R2 and the out-of-bag error
rate (Ehrlinger 2022; Ishwaran and Kogalur 2023).

Results of the PCA suggest a strong association between
lake trout Hg, body size and ecosystem productivity metrics,
and secondarily an association between DOC and lake trout
[Hg] that is modified across a latitudinal and lake size gra-
dient (Fig. 5). PC axis 1 explained 40% of the overall model
variation and primarily described an association between
mean lake trout Hg and mean body size, which was also the
dominant association detected when using univariate meth-
ods. Larger and more productive, nutrient-rich lakes typically
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Fig. 4. Random forest analysis of lake trout Hg concentrations from contemporary data. Variable importance from the exten-
sive set of physicochemical and body size predictors were included, and relative importance is assessed in descending order
of importance. Model performance was high (R2 = 0.71; model variance out-of-bag performance error = 0.051).

produce larger lake trout (Shuter et al. 1998; McDermid et
al. 2010; Lester et al. 2021); our analysis suggests that these
larger fish from large, productive lakes likely also harbour
higher Hg concentrations (e.g., Fig. 3 body size relationship).
PC axis 2, explaining an additional 25% of the PCA, relates
high mean Hg concentrations to geographic and lake mor-
phology variables (maximum depth and surface area), which
are known to affect lentic DOC concentrations (Sobek et al.
2007; Toming et al. 2020). In other words, smaller, darker, and
more northern lakes were associated with higher lake trout
Hg concentrations. Globally, food web Hg biomagnification
is positively associated with latitude (see Lavoie et al. 2013),
while increased DOC in more northern lakes has also been
associated with higher Hg concentrations walleye and North-
ern pike (Thomas et al. 2020). Lake Classes tend to increase
along Axis 1 (i.e., mean length), but with no clear separation
based on 95% confidence ellipses, again emphasizing the poor
ability to independently predict lake trout Hg concentrations

on the basis of Lake Class at the population level (i.e., using
lake means).

Our RF model further confirmed the predominant influ-
ence of lake trout body size on Hg concentrations, while em-
phasizing that ecosystem variables can modify Hg dynamics
(similar conclusions to the PCA but based on individual body
size compared to population means; Fig. 4). Multiple methods
and both datasets in the current analysis indicate that body
size (measured either as length or weight) plays a key role
in modulating lake trout Hg concentrations (Figs. 3–5), find-
ings that are also supported by a large body of literature (e.g.,
Somers and Jackson 1993; Stafford and Haines 2001; Johnston
et al. 2022). Moreover, between the two body size metrics con-
sidered here, RF indicated lake trout body length as a more
useful predictor than body weight, particularly at small and
large body sizes (Figs. S.2.a and S.2.b). Length may provide
better estimates of Hg concentrations for very slowly elimi-
nated contaminants like Hg (Madenjian et al. 2012) because it

C
an

. J
. F

is
h.

 A
qu

at
. S

ci
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

L
ak

eh
ea

d 
U

ni
ve

rs
ity

 o
n 

06
/1

8/
25

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 

http://dx.doi.org/10.1139/cjfas-2024-0197


Canadian Science Publishing

Can. J. Fish. Aquat. Sci. 82: 1–18 (2025) | dx.doi.org/10.1139/cjfas-2024-0197 11

Fig. 5. Principal component analysis (PCA) of environmental and landscape variables, mean body length (mm) and total lake
trout Hg concentrations (Hg) within the contemporary dataset. Lake Classes are identified by point shape, and colour with 95%
confidence ellipses identified by the dashed coloured lines. TDP = total dissolved phosphorus, Lat = latitude, DOC = dissolved
organic carbon.

represents lifetime skeletal growth, which is always positive
and is strongly correlated with fish age. In contrast, body
weight can fluctuate with changes in growth rates, produc-
tivity, and metabolic activity (Trudel and Rasmussen 2006).
In our survey of Ontario lakes, DOC was the third most im-
portant variable for predicting lake trout Hg levels, outper-
forming Lake Class by 74%. The next three most important
variables in the RF were related to lake physicochemical char-
acteristics (conductivity, latitude, and surface area). DOC con-
centrations are often correlated with aqueous MeHg availabil-
ity (Lavoie et al. 2019; Branfireun et al. 2020) and are also
linked to latitude and lake size (Sobek et al. 2007; Toming
et al. 2020). While latitude and surface area may indirectly
determine DOC concentrations, and therefore Hg availabil-
ity (Thomas et al. 2020), they may also indirectly influence
Hg bioaccumulation by driving variation in temperature-
dependent growth rates of stenothermic fish like lake trout
(McDermid et al. 2010). While body size presumably is linked
to Hg bioaccumulation over time, lake physicochemical char-
acteristics (i.e., DOC, latitude, and surface area) likely mod-
ulate the baseline supply of Hg to aquatic biota, ultimately
influencing biomagnification. Given the rapid response of
aquatic organisms to Hg availability (Paterson et al. 1998;
Blanchfield et al. 2022), our RF model underscores the neces-
sity of accounting for bottom-up ecosystem controls on Hg

supply to lake trout, in addition to understanding how body
size affects bioaccumulation processes.

Despite being inherently different statistical methods,
both PCA and RF independently highlight the importance
of ecosystem variables alongside body size in altering lake
trout Hg concentrations. While our analysis indicates that
Lake Class alone does not appear capable of independently
describing lake trout Hg dynamics, it reveals that a basic un-
derstanding of food chain length (i.e., Lake Class) remains a
valuable consideration for at least two reasons. First, our anal-
ysis shows that Lake Class acts as a proxy for understanding
how generalized predator–prey mass ratios can affect life his-
tory traits; in our analysis, the presence of absence of Mysis
altered the bioaccumulation slopes of lake trout. This is sup-
ported by literature demonstrating how predator–prey mass
ratios can modify Hg concentrations via growth efficiency
(Trudel and Rasmussen 2006; Shuter et al. 2016). Second, Lake
Class allows for a categorization of contaminant risks across
broad landscape scales based on coarse, yet easily assessed,
prey community characteristics once environmental and al-
lometric drivers are accounted for. For these reasons, a model
parametrized with body size, ecosystem variables, and our
proposed four-tiered Lake Class system can be assembled for
predicting size-specific lake trout Hg concentrations across
Ontario lakes.
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Developing an ecosystem model for lake
trout Hg concentrations

To provide a more comprehensive description of lake trout
Hg dynamics, important ecosystem variables identified in
PCA and RF models were added to the linear mixed-effect
model of lake trout Hg accumulation which described the in-
teraction between Lake Class and fish body length. Ecosystem
variables were included as additive covariates under the as-
sumption that they primarily modulate Hg supply and avail-
ability at the base of the food chain (e.g., Table 1; Kidd et al.
2012). Lake surface area and maximum depth are highly cor-
related (Oliver et al. 2016), so only surface area was retained
because of a higher variable importance score in the RF anal-
ysis, resulting in a full linear mixed-effects model of:

log [Hg] ∼bodyLength ∗ lakeClass + DOC + sur f aceArea

+latitude + longitude + (bodyLength|lakeID)

(3)

Model diagnostics, significance, and fit were all assessed
as described previously. Despite high variable importance in
the RF analysis, latitude and longitude were removed from
the model due to high variable collinearity (variance inflation
factors > 2; Zuur et al. 2010). Further, a likelihood ratio test
on the now reduced model (i.e., model without latitude and
longitude) indicated that lake surface area was no longer in-
formative, and as such was removed to create a parsimonious
final model of:

log [Hg] ∼bodyLength ∗ lakeClass

+DOC + (bodyLength|lakeID)

(4)

Including the additive effect of DOC substantially im-
proved the model fit, resulting in a model R2 = 0.59 com-
pared to R2 = 0.49 when only the interaction between Lake
Class and individual body size was considered (Table 2). Con-
sistent with the model where DOC was not included (i.e., eq.
2), the interaction between Lake Class and body size was sig-
nificant (F[3,65.59] = 5.99, p = 0.0011). In the present model,
DOC was significant (F[1,73.49] = 35.52, p < 0.0001), contribut-
ing 6.4% of the explained variance, which was second only
to the outsized role of body length in structuring Hg con-
centrations (body length accounted for 88% of the explained
variance; body length × Lake Class interaction accounted for
3.2%). Model residuals were normally distributed (Fig. S.3), al-
though there was some indication that modelled Hg concen-
trations were slightly overestimated at low observed Hg levels
and underestimated at high Hg levels (Fig. S.4).

This DOC-informed mixed model can be used to explore
conditions under which lake trout from Ontario lakes are
likely to experience elevated Hg contamination. Using model
coefficients (Table 2), lake trout Hg concentrations were es-
timated across Lake Classes and gradients of observed lake
trout body sizes and DOC concentrations from our contem-
porary data set (Fig. 6). Model predictions and visualizations
continue to support body size being the primary determi-
nant of Hg concentrations, though it is clear that lake DOC
concentrations play an important role determining whether

lake trout of a given size are contaminated below or above
the Canadian Hg consumption guidelines of 0.5 μgHg/gfish.
For example, a 500 mm lake trout in a median DOC lake
(∼4.3 mg/L) from any Lake Class is predicted to have Hg con-
centrations below that of the national guidelines (Fig. 6, mid-
dle panel). However, as DOC increases to 12.4 mg/L (the max-
imum observed DOC concentration in our sample lakes), a
500 mm lake trout is predicted to accumulate nearly double
the acceptable Hg concentration in its tissues across all Lake
Classes, elevating median sized lake trout above safe con-
sumption levels (Fig. 6, right panel). In clear, low DOC lakes,
lake trout Hg contamination is not likely to be of concern,
except for the very largest fish (Fig. 6, left panel). However, in
darker, high DOC lakes, even smaller lake trout are subject to
significant Hg contamination, posing potential public health
risks for human consumption (Fig. 6, right panel). Further-
more, the significant interaction between body length and
Lake Class again emphasizes how prey availability might af-
fect predator conversion efficiency, particularly at the small-
est and largest body sizes. For example, a 750 mm, Class 3
lake trout from the lowest DOC lake (Fig. 6, left panel) would
not be subject to a consumption advisory, though same-sized
individuals from a low DOC Class 1 or 2 lake may have nearly
twice as much Hg and would be above national consumption
guidelines.

To better understand lake trout Hg dynamics, we have
shown that predictive models must consider the influence of
environmental drivers and their impact on MeHg availabil-
ity at the base of food webs as well as food chain length and
body size. Being stenothermic, lake trout habitat occupancy
and foraging is primarily constrained by the presence of suit-
able oxythermal conditions; conditions that are directly af-
fected by variability in physicochemical and landscape vari-
ables, and conditions that can also affect both fish growth
rates and exposure to environmental Hg (e.g., Shuter et al.
1998, 2016, and as reviewed in Table 1). Furthermore, these
variables can influence the timing and severity of oxyther-
mal habitat restrictions during summer stratification, when
lake trout are attempting to maximize annual energy ac-
quisition for growth and reproduction (Morbey et al. 2010;
Wilkins and Marsden 2021). In our contemporary dataset
of 64 lakes, conditions varied widely in surface area (16–
34 518 ha), maximum depth (12–186 m), total dissolved phos-
phorus levels (2.6–39.6 μg/L), and DOC concentrations (1.7–
12.35 mg/L). We have shown that DOC must be accounted
for to understand lake trout Hg dynamics across Ontario
lakes (Fig. 6), and other work has demonstrated the impor-
tance of lake size and ecosystem productivity controlling
lake trout life history traits and growth rates (Shuter et al.
1998; McDermid et al. 2010). Collectively, dynamics modulat-
ing lake trout growth rates and Hg accumulation are surely
linked, as growth and conversion efficiency are tightly asso-
ciated with how Hg bioaccumulates within individuals (i.e.,
Hg “growth dilution”; Trudel and Rasmussen 2006). While
latitude, DOC and pH have been shown as determinants of
walleye, Northern pike, and white sucker Hg concentrations
(Sumner et al. 2020; Thomas et al. 2020), our ecosystem-based
approach and model selection identified DOC as the key envi-
ronmental variable explaining lake trout Hg dynamics of the
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Fig. 6. The influence of dissolved organic carbon (DOC), body size (calculated with individual total length) and Lake Class on
lake trout Hg concentrations. Panels represent the minimum (1.7 mg/L), median (4.3 mg/L) and maximum (12.4 mg/L) observed
DOC concentrations, with data points representing small (250 mm), medium (500 mm) and large (750 mm) fish. Error bars
represent the 95% confidence intervals from the mean, with solid lines indicating predictions from model coefficients. The
horizontal dashed red line indicates the Canadian Hg consumption guideline of 0.5 ppm.

variables considered here. Most regional and provincial wa-
ter monitoring agencies already collect DOC samples, which
provides the potential for targeted sampling efforts to val-
idate predictions of our model, and potentially provide in-
formation for further development of lake trout consump-
tion guidelines for lakes where DOC concentrations (or lake
colour) and standard fish body lengths are known. In cases
where DOC data are unavailable, a model excluding DOC

but incorporating latitude still provides a useful, albeit less
predictive, approach for describing lake trout Hg dynamics
across Ontario lakes (SI.2; Figs. S.5, S.6).

Despite regional decreases in atmospheric Hg deposition
(Tang et al. 2013), ongoing environmental change in many
regions appears to be shifting lakes towards greater DOC con-
centrations (lake “browning”, Solomon et al. 2015), which
our analysis suggests has the potential to amplify future lake
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trout Hg concentrations given the general close coupling of
DOC concentrations and Hg availability as indicated here
and elsewhere (Lavoie et al. 2019; though see Tsui and Fin-
lay 2011; French et al. 2014; Braaten et al. 2018). Higher
DOC loads typically increase methylation rates of existing
Hg pools (Eckley and Hintelmann 2006), but will also change
the light climate and oxythermal environments of lakes in
potentially determinantal ways as they relate to stenother-
mic salmonids (Jane et al. 2024). Increased DOC can lead to
higher surface temperatures, more intense and longer pe-
riods of thermal stratification, and increased duration and
extent of hypoxic bottom waters (Solomon et al. 2015). The
indirect effects of lake brownification largely mirror those
of climate change, which have previously been shown to al-
ter lake trout behaviour, growth, activity, and body condi-
tion by reductions in suitable seasonal habitat availability
and energy acquisition, especially in Class 1 and 1.5 lakes
which lack offshore prey fish (Guzzo et al. 2017). Ongoing en-
vironmental change within the current distribution of lake
trout lakes is predicted to lead to both darker and warmer
lakes (Magnuson et al. 2000; Evans et al. 2005; Vuorenmaa et
al. 2006; Meyer-Jacob et al. 2019; Sharma et al. 2019) which
should yield smaller lake trout due to the metabolic con-
sequences of inhabiting increasingly high-temperature, hy-
poxic waters (Ohlberger 2013, but see Solokas et al. 2023 and
Warne et al. 2024). While our model predicts that relatively
smaller lake trout have lower Hg concentrations, this may
be counteracted by the effects of increasing DOC (e.g., Fig. 6).
Additionally, the challenges of existing in warmer, oxygen-
depleted environments are predicted to reduce prey conver-
sion efficiency via increased metabolic costs and could lead to
Hg further concentrating within muscle tissues (Trudel and
Rasmussen 2006).

Summary and conclusions
Through various iterations of data and model complexity,

we show that understanding lake trout Hg dynamics in lakes
typical of Ontario boreal and north-temperate ecosystems re-
quires an examination of both the top-down food web charac-
teristics impacting traits like body size, as well as the bottom-
up drivers that facilitate Hg availability (i.e., DOC). Multiple
lines of evidence suggest that body size is the most important
variable when predicting lake trout Hg, though ultimate de-
terminations of Hg burden depend on ecosystem properties
and energetic efficiencies conveyed by the presence of cer-
tain prey. Cabana et al. (1994) originally proposed that lake
trout Hg should increase with increasing food chain length,
and while our assessment here indicates that Lake Class does
not predict Hg concentrations as Cabana et al. (1994) sug-
gested, a coarse categorization of prey communities is still
useful (particularly Mysis presence), especially when predict-
ing Hg concentrations from the smallest and largest individu-
als within a population. Size-corrected trophic position con-
taminant models for fishes from inland lakes provide valu-
able insights into how diet influences both consumer life
history traits and contaminant dynamics (Swanson and Kidd
2010; Johnston et al. 2022; Drouillard et al. 2024); however,
our study and the work of others emphasizes the importance

of considering environmental determinants of aqueous Hg–
DOC in the case of lake trout——especially in small inland lakes
like those examined here. With DOC concentrations being
identified as an important determinant of lake trout Hg con-
centrations, future studies could assess the temporal impor-
tance of changing DOC concentrations on Hg dynamics of
specific lake trout populations, while also forecasting how fu-
ture brownification is likely to affect Hg concentrations going
forward.

Here, we show that lake trout Hg risk in Ontario lakes
can be conservatively estimated using three easily assessed
quantities——(1) the body length of a lake trout likely to be cap-
tured and consumed by anglers, (2) the DOC concentration
of a lake, and (3) the presence and absence of two key prey
items (Mysis and pelagic prey fishes). We also demonstrate
that lake trout Hg concentrations are better assessed when
using individual, rather than population-level data; Hg con-
centrations are highly variable both between and within pop-
ulations and reducing lake-specific dynamics to a single value
does not adequately describe Hg dynamics across lakes. With
further targeted field validation of our model, this ecosystem-
scale framework may provide a means of updating contam-
inant guidelines based on regional water quality data and
existing food web structure information which may be eas-
ier and more cost effective to sample than multi-day cam-
paigns to capture fish. Consumption guidelines are generally
based on fish length because it is an easily measurable char-
acteristic for anglers. Similarly, our analysis suggests that a
practical recommendation for anglers——aligned with current
Health Canada guidelines——would be to consider the nutri-
tional and health trade-offs from consuming lake trout from
darker, tea-stained lakes, where Hg concentrations are more
likely to exceed advisory thresholds. Lastly, our findings on
the drivers of lake trout Hg dynamics from boreal and north-
temperate lakes align closely with those observed in other
freshwater fishes from this region despite diverse feeding
strategies, thermal preferences and habitat use among the
different species (e.g., Walleye, Northern Pike, White Sucker;
Sumner et al. 2020; Thomas et al. 2020).
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